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Super-resolution (SR) technique reconstructs a higher-resolution image or sequence from the observed
LR images. As SR has been developed for more than three decades, both multi-frame and single-frame SR
have significant applications in our daily life. This paper aims to provide a review of SR from the per-
spective of techniques and applications, and especially the main contributions in recent years. Reg-
ularized SR methods are most commonly employed in the last decade. Technical details are discussed in
this article, including reconstruction models, parameter selection methods, optimization algorithms and
acceleration strategies. Moreover, an exhaustive summary of the current applications using SR techni-
ques has been presented. Lastly, the article discusses the current obstacles for future research.
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1. Introduction

Image spatial resolution refers to the capability of the sensor to
observe or measure the smallest object, which depends upon the
pixel size. As two-dimensional signal records, digital images with a
higher resolution are always desirable in most applications. Ima-
ging techniques have been rapidly developed in the last decades,
and the resolution has reached a new level. The question is
therefore: are image resolution enhancement techniques still
required?

The fact is, although the high-definition displays in recent years
have reached a new level (e.g., 1920*1080 for HDTV, 3840*2160 for
some ultra HDTV, and 2048*1536 for some mobile devices), the
need for resolution enhancement cannot be ignored in many ap-
plications [1]. For instance, to guarantee the long-term stable op-
eration of the recording devices, as well as the appropriate frame
rate for dynamic scenes, digital surveillance products tend to sa-
crifice resolution to some degree. A similar situation exists in the
remote sensing field: there is always a tradeoff between the spa-
tial, spectral, and temporal resolutions. As for medical imaging,
within each imaging modality, specific physical laws are in control,
defining the meaning of noise and the sensitivity of the imaging
process. How to extract 3D models of the human structure with
high-resolution images while reducing the level of radiation still
remains a challenge [2,3].

Based on these facts, the current techniques cannot yet satisfy
the demands. Resolution enhancement is therefore still necessary,
especially in fields such as video surveillance, medical diagnosis,
and remote sensing applications. Considering the high cost and
the limitations of resolution enhancement through “hardware”
techniques, especially for large-scale imaging devices, signal pro-
cessing methods, which are known as super-resolution (SR), have
become a potential way to obtain high-resolution (HR) images.
With SR methods, we can go beyond the limit of the low-resolu-
tion (LR) observations, rather than improving the hardware
devices.

SR is a technique which reconstructs a higher-resolution image
or sequence from the observed LR images. Technically, SR can be
Fig. 1. The concept of multi-frame super-resolution. The grids on the left side re-
present the LR images of the same scene with sub-pixel alignment, thus the HR
image (the grid on the right side) can be acquired by fusing the complementary
information with SR methods.
categorized as multi-frame or single-frame based on the input LR
information [4–8]. If multiple images of the same scene with sub-
pixel misalignment can be acquired, the complementary in-
formation between them can be utilized to reconstruct a higher-
resolution image or image sequence, as Fig. 1 shows. However,
multiple LR images may sometimes not be available for the re-
construction, and thus we need to recover the HR image using the
limited LR information, which is defined as single-frame SR [9–12].

Although SR techniques have been comprehensively summar-
ized in several studies [4,6,8,13–15], this paper aims to provide a
review from the perspective of techniques and applications, and
especially the main contributions in recent decades. This paper
provides a more detailed description of the most commonly em-
ployed regularized SR methods, including fidelity models, reg-
ularization models, parameter estimation methods, optimization
algorithms, acceleration strategies, etc. Moreover, we present an
exhaustive summary of the current applications using SR techni-
ques, such as the recent Google Skybox satellite application [16]
and unmanned aerial vehicle (UAV) surveillance sequences [17].
The current obstacles for the future research are also discussed.
2. Technical background

Nowadays, charge-coupled devices (CCDs) and complementary
metal oxide semiconductors (CMOSs) are the most widely used
image sensors [4,18]. To obtain an HR image, one of the solutions is
to develop more advanced optical devices. As the spatial resolu-
tion is governed by the CCD array and optical lens, reducing the
pixel size is one of the most direct approaches to increase the
spatial resolution. However, as the pixel size decreases, the
amount of available light also decreases, and the image quality
becomes severely degraded by shot noise. Furthermore, non-
rectangular pixel layouts, as in the hexagonal Fujifilm super CCD
and the orthogonal-transfer CCD [18,19], have been used to in-
crease the spatial sampling rate, as shown in Fig. 2. Other ap-
proaches include increasing the focal length or the chip size.
However, a longer focal length will lead to an increase in the size
and weight of cameras, while a larger chip size will result in an
increase in capacitance. Therefore, both of these approaches are
not considered to be effective due to the limitations of the sensors
and the optics manufacturing technology [4]. Compared with
CMOSs, CCDs have advantages in sensor sensitivity, imaging re-
solution, noise suppression and technology maturity [20]. How-
ever, considering the high cost of current CCD-based cameras,
CMOS-based technologies have recently been investigated. For
example, Scientific CMOS (sCMOS) sensors feature a higher re-
solution and high signal-to-noise ratio (SNR); however, the prac-
tical use of this technology remains a problem [21]. Overall, due to
the limitations of hardware technology, it is still necessary to study
SR algorithms to achieve the goal of resolution enhancement.

Based on the concept of SR, the first problem we need to dis-
cuss is the conditions to obtain an HR image from multiple LR
observed images. In general, if there is supplementary information
among the images, SR is feasible [22]. That is to say, the LR ob-
servations cannot be obtained from each other by a transformation
or resampling process, thus they contain different information



Fig. 2. The basic CCD types [18]: (a) conventional CCD, (b) super CCD with a nonrectangular pixel layout, and (c) orthogonal-transfer CCD.
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Fig. 3. Sub-pixel imaging for SPOT-5 [23]. A double CCD linear array in (a) generates two classical square sampling grids in (b), shifted by half a sampling interval in both row
and column directions.
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which can be used for SR. If the relative shifts between the LR
images are integral, the images after motion registration will
contain almost the same information. As a result, SR cannot obtain
effective results.

To implement SR in a real application, researchers have at-
tempted to acquire the images for SR through hardware control. By
means of designing the imaging mechanism by hardware techni-
ques, the sensors can acquire observations with known sub-pixel
displacements, or multiple “looks” for the same scene. SR is
therefore possible. Successful examples can be found in various
fields [2,23–26]. One of the most famous successful cases is in the
field of remote sensing. In the French space agency's SPOT-5 sa-
tellite system, a specially developed CCD detector was used which
packages two 12,000-pixel CCDs in one structure. Two line-array
CCDs are shifted with each other by half a pixel width in the line-
array direction, as shown in Fig. 3 [23]. Since the two CCD detec-
tors can capture images at the same time, a set of data can
therefore be acquired at a half-pixel shift in the imaging position.
Using this device and SR techniques, we can obtain a HR image
from the two sub-pixel shifted images. Leica ADS40 aerial cameras
have adopted a similar imaging mechanism to SPOT-5 [27,28].
Moreover, some CCD pixels comprise sub-pixels with different
shapes and spatial locations [29]. By combining multiple images
recorded with different sub-pixel components, we can obtain a
higher-resolution image via SR.
3. Super-resolution technologies and methods

In this part, we discuss the methods and current problems for
SR with multiple observations. The key problem is how to use the
supplementary information among the acquired repeat-pass
images. In 1964, Harris [30] established the theoretical foundation
for the SR problem by introducing the theorems of how to solve
the diffraction problem in an optical system. Two decades later,
Tsai and Huang [31] first addressed the idea of SR to improve the
spatial resolution of Landsat TM images. Since then, many re-
searchers have begun to focus on SR, either in theoretical research
or practical applications [1,2,22,24–26,28,32–70]. SR has now been
developed for more than three decades, and the progress of SR can
be roughly summarized as follows.

At the very start, most of the methods concentrated on the
frequency domain [31,33,59–61]. Frequency domain algorithms
can make use of the relationship between the HR image and the LR
observations based on a simple theoretical basis, and have high
computational efficiency. However, the methods have apparent
limitations, such as sensitivity to model errors and difficulty in
handling more complicated motion models, which have prevented
them from further development.

Due to the drawbacks of the frequency domain algorithms,
spatial domain methods then became the main trend [4]. The
popular spatial domain methods include non-uniform interpola-
tion [35], iterative back-projection (IBP) [56], projection onto
convex sets (POCS) [57,63,70], the regularized methods
[34,40,43,47,53,54,58,62], and a number of hybrid algorithms [71].
Early review papers have provided specific descriptions and ex-
planations of those methods [4,8,14]. Among them, the regularized
methods are the most popular due to their effectiveness
and flexibility. Therefore, most of the recent representative arti
cles about SR have focused on regularized frameworks
[1,47,49,53,54,68,72,73]. In this part, our emphasis is to review the
development of the regularized methods, especially over the last



Fig. 4. The super-resolution imaging model. Bk , Mk and Dk indicate the blur matrix, warp matrix and down-sampling matrix, respectively. nk represents the additive noise,
while Ok is the operator cropping the observable pixels from yk .
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decade. Furthermore, the related research progress into parameter
setup and optimization algorithms is also summarized. The re-
mainder of this part is structured as follows. Firstly, we talk about
the imaging models. The related models are then described, in-
cluding the data fidelity and regularization terms. Some advanced
techniques and challenges are then discussed, including adaptive
parameter setup, blind reconstruction, and optimization strategies.

3.1. The observation model

The imaging model, which refers to the observation model, is
essential to SR when using a regularized framework. Before re-
construction, we need to clarify the process by which the observed
images have been obtained. The image acquisition process is in-
evitably confronted with a set of degrading factors, such as optical
diffraction, under-sampling, relative motion, and system noise. In
general, we usually suppose that the degradation procedure dur-
ing image acquisition involves warping, blurring, down-sampling,
and noise (Fig. 4), and the observation model is simulated as fol-
lows:

= + ( )y O D B M z n 1k k k k k k

where there are K LR images participating in the reconstruction.
As ×N Nk k1 2 is defined as the size of the kth input LR image,

×L N L Nk k k k1 1 2 2 is set as the size of the reconstructed HR data,
which is determined by the horizontal and vertical magnification
factors L k1 and L k2 . In (1), z is the vector form of the reconstructed
image with a size of ×L N L N 1k k k k1 1 2 2 , which is given as

= ⋯⎡⎣ ⎤⎦z z zz , , , L N L N
T

1 2 k k k k1 1 2 2 , and = ⋯⎡⎣ ⎤⎦y y yy , , ,k k k k N N
T

,1 ,2 , k k1 2
is the

vector form of the kth input dataset. Dk is the down-sampling
matrix of size ×N N L N L Nk k k k k k1 2 1 1 2 2 , Bk represents the blurring
operator with size of ×L N L N L N L Nk k k k k k k k1 1 2 2 1 1 2 2 , and Mk is the
warp matrix describing the motion information (e.g. translation,
rotation, etc.). nk ( ×N N 1k k1 2 ) indicates the additive noise. Ok is the
operator excluding the unobservable pixels from the kth image
[47,74,75]. In this way, we can deal with the inpainting and SR
problem simultaneously if there are invalid pixels and/or motion
outliers in the LR images (Fig. 4).

We can obtain the observation model for single-frame SR when
=K 1 in (1). If Dk and Mk are excluded, it is a model for image

restoration, only dealing with the problems of noise, blurring, or
missing information. For convenience of expression, we rewrite
model (1) by substituting the product of Ok, Dk , Bk, and Mk by Hk,
which is as follows:

= + ( )y H z n 2k k k

The model in (1) is still insufficient for expressing all possible
situations. As a result, other models take more complicated factors
into consideration to better describe real cases, including different
kinds of noise [52,76], dimensional complexity [51], domain
transformation for the particular images [77], etc. These models
are not discussed in detail in this paper.

3.2. Regularized reconstruction methods

3.2.1. The regularized framework
Based on the observation model described above, the target is

to reconstruct the HR image from a set of warped, blurred, noisy,
and under-sampled measured images. As the model in (2) is ill-
conditioned, SR turns out to be an ill-posed inverse problem.
Based on maximum a posteriori (MAP) theory, the problem we
need to solve can be transformed to the minimization problem as
[62,78]

( )∑ ρ λ( ) = − + ( )
( )=

z y H z zE Uarg min
3z k

K

k k
1

where ρ ( ⋅) and ( ⋅)U indicate the corresponding constraint func-
tions. In (3), the first term is the data fidelity term, and the second
term is the regularization term, with ( )zU being the energy
function. λ is the regularization parameter balancing these two
terms. This is the general variational regularized SR framework.
Without the regularization term, this is equal to maximum like-
lihood (ML) estimation. The MAP methods incorporate the prior
constraints of the image, and obtained the results by maximizing
the cost function of the posterior probability. They are popular for
their flexibility with edge-preserving priors and joint parameter
estimation. Comparatively, Bayesian estimation are used when the
posteriori probability distribution of the unknown parameters,
instead of the specific parameters, is estimated.

3.2.2. The data fidelity term
The data fidelity term is used to constrain the residuals be-

tween the real LR images and the simulated ones obtained, and it
is usually associated with the noise model. For instance, the l2



Fig. 5. The properties of different norm functions and the error distribution, where (b) and (c) indicate the distribution for Gaussian and Laplacian errors, respectively. The l2
norm corresponds the quadratic curve in (a), which is consistent with the Gaussian distribution in (b). In contrast, the plot of l1 norm is more consistent to the Laplacian
distribution.
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norm based linear least-squares term is widely used
[41,49,62,79,80], as =p 2 in (4). The main advantage of the l2 norm
problem is that it is easy to solve, and many efficient algorithms
exist [43,81]. However, the result solved by the l2 model is only
optimal when the model error is white-Gaussian distributed [82].

∑( ) = −
( )=

z y H zF
4k

K

k k p

p

1

As a result, there has been a growing interest in choosing the l1
norm as the function ρ ( ⋅) in (4) for image SR and restoration,
where =p 1 in (4). As the l2 norm corresponds to Gaussian dis-
tributed errors, the l1 norm mainly corresponds to the Laplacian
error model, as shown in Fig. 5. According to Farsiu et al. [43],

=p 1 results in a pixel-wise median and =p 2 leads to a pixel-wise
mean of all the measurements after motion compensation in the
SR model. It has been proven that the −l norm1 fidelity is more
effective than the −l norm2 fidelity when the images contain non-
Gaussian errors [43,83].

For complicated types of noise and/or model error, however,
both the l1 norm and the l2 norm have their advantages and dis-
advantages. Some researchers have therefore employed improved
techniques for the data fidelity term [52,81,84–87]. In cases with
mixed error modes, the lp norm function ( ≤ ≤p1 2) is sometimes
employed as the constraint function because of its convex prop-
erty and its pertinence for the imaging model errors [81]. When

≤ ≤p1 2, it results in a weighted mean of measurements. If the
value of p is close to one, then the solution is calculated with a
larger weight around the measurements near the median value.
When the value of p is near to two, the solution is approximated to
the average value [43]. In some cases, images are contaminated by
PSNR: 22.026
SSIM: 0.530

PSNR: 26.108
SSIM: 0.730

Fig. 6. The SR reconstruction results of the Lena image by (a) bilinear interpolation, an
p¼1.3.
both Gaussian and non-Gaussian errors, and the lp norm function
is considered to be an effective solution [81,82]. According to the
imaging model, detecting the outliers and restoring them in ma-
trix Ok as unobservable pixels is also an effective way to exclude
the impulse noisy pixels and the motion outliers belonging to non-
Gaussian errors [47].

The comparative reconstruction results for the different fidelity
norms are given in Figs. 6–7. In the first case, the synthetic test was
conducted with the Lena test image, in which the original image
was first down-sampled by a factor of two in both the horizontal
and vertical directions. Thus, four LR images were obtained, with
the translational shifts being (0, 0), (0, 0.5), (0.5, 0), and (0.5, 0.5). A
mixed mode of Gaussian (normalized variance 0.003) and impulse
noise (density 0.03) was then added in the LR images. In the
Foreman experiment, five degraded images with moving objects
were included in the reconstruction, and the 24th frame of the
video sequence was set as the reference frame. The LR images
were obtained using the corresponding HR frames in the video,
with a down-sampling factor of two. We evaluate the results of the
synthetic experiments using the peak signal-to-noise ratio (PSNR)
and the structural similarity (SSIM) index [88]. The PSNR is used to
evaluate the gray value similarity, while the SSIM is mainly em-
ployed to reflect the structural similarity [89]. When images are
contaminated with mixed noise (Fig. 6), the l2 norm cannot
completely remove the speckles while preserving the texture. In
contrast, the l1 norm has some problems in dealing with Gaussian-
distributed noise, and the lp norm can obtain better results, in
terms of both the visual effect and quantitative indexes. In the
second test, it can be clearly seen that l1 and lp are more robust
than l2 when dealing with motion outliers in the LR observations.
PSNR: 28.040
SSIM: 0.787

PSNR: 28.311
SSIM: 0.801

d (b) MAP with l2-norm fidelity, (c) l1-norm fidelity, and (e) lp-norm fidelity, with



PSNR: 32.671
SSIM: 0.921

PSNR: 35.683
SSIM: 0.942

PSNR: 36.542
SSIM: 0.960

PSNR: 36.675
SSIM: 0.959

Fig. 7. The SR reconstruction results of the noiseless Foreman image by (a) bilinear interpolation, and (b) MAP with l2-norm fidelity, (c) l1-norm fidelity, and (e) lp-norm
fidelity, with p¼1.5.
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With the ability to deal with motion outliers, both l1 and lp can
prevent the reconstructed details from being oversmooth. Fur-
thermore, the −l normp fidelity can achieve a balance between
removing noise and suppressing motion artifacts in the noisy cases
[52].

A weighted data fidelity term is also suitable for some cases in
which the LR images make different contributions to the re-
constructed image [25,79,90]. In some practical cases, the amount
of available information contained in each LR image might differ
according to the image quality (e.g., noise level, spatial resolution,
angle, etc.). Thus, different weights should be considered in such
cases, as in (5). A weighted data fidelity term has been widely used
in the related works, and different methods were presented to
determine wk [25,79,90]. The core idea is to discriminate between
the different contributions of the LR images involved in SR.

∑( ) = ⋅ −
( )=

z y H zF w .
5k

K

k k k p

p

1

3.2.3. The regularization term
The regularization plays a significant role in the regularized

variational framework. As SR is a classical ill-posed inverse pro-
blem, regularization is therefore adopted to stabilize the inversion
process [4,47,91]. According to the Bayesian theorem, the reg-
ularization term represents the image prior modeling, providing
the prior knowledge about the desired image [4,72,92]. Over the
past 10 years of vigorous development, there have been a large
amount of studies of regularization for image restoration and SR
[81,89,93–98].

3.2.3.1. Smoothness prior models. In the early years, the smooth-
ness of natural images was mainly considered, which leads to the
quadratic property of the regularizations [99,100]. Tikhonov-based
regularization is the representative smoothing constraint, whose
energy function is usually defined as

Γ( ) = ( )z zU 62
2

where Γ is usually chosen as an identity matrix or high-pass op-
erator (e.g., a difference operator or a weighted Fourier operator).
Laplacian regularization is one of the most common regulariza-
tions used in SR, and was developed from Tikhonov regularization
by choosing the smoothing operator as the discrete 2-D operator
[100].

Another category of regularization is based on Markov theory.
A Markov random field (MRF) assumes that the value of a pixel is
only related to the adjacent pixels, which satisfy a Gibbs density
function [50]. In this way, MRF can efficiently describe the local
statistical characteristics of images. The energy function can be
given as

( )∑ ∑ ϕ( ) = ( ) =
( )

τ

∈ =

z z zU V d
7c C

c
t

c
t

1

where dc
t is a coefficient vector for clique c, which is usually de-

fined as the finite-difference approximations to second-order de-
rivatives in the four directions. ϕ ( ⋅) is the constraint function. The
regularization function is usually divided into two categories,
Gaussian MRF (GMRF) [78] or Huber MRF (HMRF) [101], in ac-
cordance with the choice of ϕ ( ⋅). For GMRF regularization, the
quadratic l2 norm is employed for ϕ ( ⋅).

These regularized methods smooth the restored image by pe-
nalizing the high-frequency component, and thus perform well in
suppressing noise. However, they inevitably oversmooth the sharp
edges and detailed information.

3.2.3.2. Edge-preserving prior models. The smoothing prior models
are somewhat against the nature of images, in that sharp details in
images are always desirable for human beings in many applica-
tions, including remote sensing imaging, medical diagnosis and
object recognition [2,28,69]. Thus, −l norm1 based regularizations
are often preferred for their edge-preserving properties
[93,101,102]. The representative total variation (TV) regularization
was first proposed by Osher et al. [93,103], based on the fact that
an image is naturally “blocky” and discontinuous. The standard TV
norm is given as

β( ) = (∇ ) + (∇ ) + ( )z z zU 8h v2 2

where ∇ zh and ∇ zv are the first-order image gradients in the
horizontal and vertical directions, respectively. Here, β is a small
scalar to ensure differentiability.

Unlike the quadratic regularizations, edge information can be
better preserved using TV regularization, with the l1 norm to deal
with the image information rather than the l2 norm [47,104,105].
Therefore, the TV prior model has been the most popular model
for image processing in the last two decades, and has been applied
in fields such as image denoising, deblurring, segmentation, and
SR [47,76,104,106]. However, the results of the TV prior model will
often result in a “staircase” effect with strong noises, especially in
flat regions [89].

To overcome the shortcomings of the TV prior model, some
researchers have proposed spatially adaptive strategies. A number
of methods use spatially adaptive regularization parameters to
eliminate the staircase effects [94,107–109]. Some of them classi-
fied the image into detailed and flat regions using the spatial in-
formation, and used a larger penalty parameter for the flat regions
and a smaller one for the edges [94,107]. However, the spatially
adaptive indicators such as gradients, the difference curvature, and
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structure tensor are usually sensitive to noise.
Moreover, different norm constraints can also be employed for

the prior modeling in a spatially adaptive way [96,108]. The lp

norm, rather than the l1 norm, can be used as the constraint
function for ∇z in the TV term. As the l2 norm represents a
smoothing prior and the l1 norm tends to preserve the edges, the lp

( ≤ ≤p1 2) norm achieves a balance between them, thereby
avoiding the staircase effect [110]. Other improvements include
higher-order TV (HDTV) [111], bilateral TV (BTV) [43], locally
adaptive BTV (LABTV) [96], etc.

HMRF is also a representative edge-preserving prior model
[101,112]. A hybrid norm can theoretically achieve a balance be-
tween preserving edges and suppressing noise, to some degree.
For the HMRF term, ϕ ( ⋅) in (7) is chosen as the Huber function,
which is piecewise as:

ϕ ( ) =
−

≤
> ( )

⎧⎨⎩x
x

T x T
x T
x T2 9

2

2

where T is the threshold. The Huber function satisfies the prop-
erties of convexity, symmetry, and discontinuity. The HMRF model
is effective when dealing with images with clear texture. However,
only the neighborhood information is considered, which limited
its performance [113].

3.2.3.3. Nonlocal-based priors. The local derivatives are somewhat
sensitive to noise in the images’ homogenous regions, which ne-
gatively affects the reconstruction effect in noisy cases. Recently,
the concept of nonlocal-based priors has been proposed and has
The LR image
PSNR:
SSIM

PSNR: 28.472
SSIM: 0.816

PSNR:
SSIM

Fig. 8. The SR reconstruction results using different regularizations. Top row: bilinear int
regularization [47], NLTV regularization [114], and the original HR image.
developed rapidly in image processing [97,114–116]. Rather than
defining the neighborhood of a pixel locally, nonlocal-based priors
consider pixels in a large search area and weight them according
to the similarity between rectangular patches. This is based on the
assumption that every feature in a natural image can be found
many times in the same scene [114]. The nonlocal models have
become popular in the regularized framework, given the nonlocal
TV regularization as

( ) ( ) ( )∑ ∑( ) = −
( )ΠΩ∈ ∈

z z zU w i j i j,
10

NLTV
i j i

where i indicates one of the pixels in the image Ω → z: , and the
search window is usually restricted to the square neighborhood of
i, denoted as Πi. The weight function ( )w i j, can then be defined as

( )
σ

= −
‖ ( ) − ( )‖

( )

⎛
⎝⎜

⎞
⎠⎟

z z
w i j

P P
, exp

11

i j p
p

2

Here, ( )zPi and ( )zPj represent the ( ) ( )+ × +n n2 1 2 1 patch of
z , centered at the pixel i (or j) with a radius of n. The similarity can
be calculated with various distance formulas (e.g., by choosing
different values of p). σ is the filtering parameter. Compared with
the TV model, the nonlocal-based model can make use of more
information, and can thus prevent the staircase effect in flat re-
gions, and can help restore the details [97,113].

The comparative results of the typical regularizations are dis-
played in Fig. 8. The down-sampling process was set the same as
for the Lena image in Section 3.2.2. The generated LR images were
then blurred by a 3*3 filter with a variance of 1, and contaminated
 27.462
: 0.770

PSNR: 28.252
SSIM: 0.822

 28.561
: 0.818

The original image

erpolation, Laplacian regularization, and HMRF regularization [100]. Bottom row: TV
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by Gaussian noise with a standard variance of 10. From the results,
it can be seen that all the edge-preserving regularizations perform
well in removing noise and preserving the details. Nevertheless,
the results of the HMRF and nonlocal TV models better conform to
human visual perception.

In addition to the above regularizations, there have been many
other studies of prior models, such as regularization based on
sparsity [117], along with morphological theory [98]. The common
goal of all these methods is that they want to reconstruct a
noiseless HR image with natural texture and clear, detailed in-
formation. There have also been studies of spectral images (e.g.,
digital color images or hyperspectral images), where the emphasis
has been on the preservation of spectral information, while en-
hancing the spatial resolution [118,119].

3.2.4. Adaptive regularization parameter selection
Parameter selection is always a headache when dealing with

ill-posed inverse problems. The regularization parameter, in par-
ticular, plays a significant role in image SR. In this part, we present
the main approaches to adaptive strategies for determining the
regularization parameter λ in (6).

In many cases, the regularization parameter is selected manu-
ally. The common approach is to test a sequence of regularization
parameters and select the optimal parameter corresponding to the
best results evaluated by quantitative indexes or visual inspection.
This is, however, a time-consuming and subjective process.
Therefore, adaptive strategies are necessary in the SR process. A
number of strategies have been specially designed to adaptively
estimate the regularization parameter. These strategies have
mainly been inspired by developments in the inverse problem
field, such as denoising and deblurring [120–123]. The popular
methods include the L-curve method [124], generalized cross-va-
lidation (GCV) [35], and the U-curve method [49].

It has been noted in the earlier studies that the GCV method
tends to give unsatisfactory results if the model errors are highly
correlated [121]. The L-curve method has some advantages over
GCV, including well-defined numerical properties and robustness
in dealing with highly correlated errors. Both of the L-curve and
U-curve methods are based on the parametric plots generated by
varying the regularization parameter λ. The target is to find the
optimal λ that achieves a good balance between minimizing the
data fidelity and regularization. As the −l norm2 based model is
chosen, the energy function can be given as

∑ Γλ( ) = − +
( )=

z y H z zE arg min
12z k

K

k k
1

2 2

where Γ indicates the two-dimensional Laplacian operator. After
using the singular value decomposition (SVD) least-squares
method for Hk, we define

( ) ( )∑ Γλ λ= ‖ − ^ ‖ = ‖ ^ ‖
( )

λ λ
=

y H z zR P,
13k
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k k
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2 2

The L-curve method searches for the distinct L-shaped corner
using the relationship between ( )λR and ( )λP , while the U-curve
method selects the maximum curvature point close to the left
vertical part of the U-curve ( ( ) ( ) ( )λ = +

λ λ
U

R P
1 1 ) as the optimal

parameter. It has been proved that the U-curve method can obtain
more accurate solutions in quadratic cases for SR. Further details
can be found in the related works [49,124]. These methods can
obtain relatively good solutions, but they have not yet been ex-
tended to the general regularized framework with various
regularizations.

It has to be mentioned that the Bayesian framework [53,72] is
also a powerful tool for modeling unknown parameters, including
the regularization parameter, the blur kernel, and motion vectors.
We discuss the Bayesian methods in the next section.

3.2.5. Blind reconstruction
Earlier in this article, we have discussed the main develop-

ments in the SR framework based on MAP theory, from the point
of view of data fidelity and regularization. However, the techni-
ques mentioned before are used with the assumption that the
parameters, such as the motion model, blur kernel, and noise level,
are known [62]. This is impractical in real-world cases, where the
motion of objects and cameras cannot be estimated beforehand. In
addition, the point spread functions (PSFs) and the noise level are
always unknown.

The traditional methods deal with parameter estimation and
reconstruction separately. These methods regard registration and
blur kernel identification as a preprocessing stage [43,79,96].
However, the parameters estimated using only the LR images can
be inaccurate, which will lead to an unsatisfactory performance.
We introduce two effective strategies for blind reconstruction
below.

3.2.5.1. The joint MAP framework. The MAP framework is ad-
vantageous in parameter estimation due to its flexibility in adding
priors for the unknown parameters [4]. Therefore, some re-
searchers have developed joint MAP methods to adaptively obtain
the unknown parameters [62,125,126]. Similar to the observation
model in (1), we define the LR observations as

= ⋯⎡⎣ ⎤⎦y y y y, , ,T T
K
T T

1 2 , the motion vectors as = ⋯⎡⎣ ⎤⎦s s s s, , ,T T
K
T T

1 2 ,
and the PSFs as = ⋯⎡⎣ ⎤⎦h h h h, , ,T T

K
T

1 2 . The observation model in
(1) can then be expressed in matrix notation as (14)

( )= ( ) + ( )y ODB h M s z n 14

Noting that z , h, and s are statistically independent, we can
form an estimate of the unknown parameters simultaneously,
according to the theory of MAP. Once we determine the probability
density function (PDF) of z , h, and s, the ill-posed inverse problem
can be solved by optimizing the following cost function:

{
}
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The estimated parameters are iteratively updated along with
the reconstructed image in a cyclic optimization procedure.
However, there will be a number of unknown parameters which
need to be tuned.

3.2.5.2. The Bayesian framework. Differing from the MAP estimator,
the Bayesian methods calculate the posterior distribution instead
of setting specific values of the parameters for the SR system
[72,127]. Both the ML and MAP estimators return only single and
specific values for the parameters, while Bayesian estimation, in
contrast, fully calculates the posterior distribution ( )z h s yp , , .

The Bayesian inference is based on the posterior distribution,
and thus

( ) ( )
=

( ) ( )
z h s y

z h s y
y

p
p

p
, ,

, , ,

16

Here ( )z h s yp , , , refers to ( ) ( )( ) ( )y z h s z h sp p p p, , for the
convenience of expression. ( )yp is independent of the unknown
variables, and is usually ignored in the MAP estimator. In fact, as in
many applications, ( )z h s yp , , is intractable because ( )yp cannot
be computed [72]. Approximation methods need to be utilized for
the reconstruction [45,53,72]. In Babacan's work [72], they utilized
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a variational Bayesian method by minimizing the Kullback–Leibler
(KL) distance between the posterior ( )z h s yp , , and a tractable
distribution ( )z h sq , , . Assuming the approximated distribution

( )z h sq , , can be factorized, the distribution of the corresponding
parameter can be estimated by calculating the corresponding ex-
pectation using the first-order Taylor series.

By estimating the full posterior distribution of the unknowns
instead of point estimations corresponding to the maximum
probability (e.g., MAP), the uncertainty of the estimates is in-
corporated into the estimation procedure. In addition, the un-
known parameters can be estimated during the iterative estima-
tion process [41,53,72]. Nevertheless, the accuracy of the Bayesian
framework depends on the parameter distribution models, and is
influenced by some attached parameters via the iterations.

3.2.6. Optimization methods
After the reconstruction model is built, the HR image can be

acquired by optimizing the corresponding cost function. If a
Gaussian distribution is chosen for the noise model, and a quad-
ratic constraint is employed for the regularization, then the energy
function can be given as (12). The Euler–Lagrange function can be
acquired as follows:

( )∑ Γ Γλ∇ ( ) = − − + =
( )=

z H y H zE z 0
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For the quadratic equation, +zn 1 can be obtained as the solution
to the linear equation
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The minimization of the standard −l norm2 based model is the
regularized solution of a linear partial differential equation (PDE).
To solve this quadratic ill-posed inverse problem, a conjugate
gradient (CG) or preconditioned CG (PCG) method is usually em-
ployed to optimize the Lagrangian functional [47,128]. With the
initial estimation and stopping criterion for the iteration given, the
estimated result will approximate the numerical solution via
iterations.

However, the l2 norm-based model cannot acquire satisfactory
results in many real cases. Compared with the l2 norm, it is difficult
to employ conventional numerical methods for −l norm1 problems
directly, due to the nonlinearity of the l1 norm function. Moreover,
the convergence rate cannot meet the demand of large-scale in-
verse problems. Some efficient approximation methods have been
developed for optimizing the l1 norm regularized functional
[102,104,105,128–131]. Typically, the popular numerical algo-
rithms for the nonlinear SR problems can be roughly classified into
two categories, which are: (1) Euler–Lagrange smooth approx-
imation; and (2) primal–dual/splitting algorithms.

3.2.6.1. Euler–Lagrange smooth approximation. As we know, perfect
or exact solutions are often difficult to acquire. The common goal
is to find the optimal solution in a statistical sense. Euler–Lagrange
smooth approximation methods generally use a smooth approx-
imation of the −l norm1 , thus construct a linear functional to op-
timize. The representative algorithms include lagged diffusivity
fixed point iteration (LDFPI) [128], majorization-minimization
(MM) [104], the iteratively reweighted norm (IRN) [129,132], and
the half-quadratic algorithm [95]. As one of the most popular
regularizations employed in image restoration, the TV model is a
classical non-quadratic optimization problem. Here, we take the

−l TV2 SR model as an example to show the specific approxima-
tion process. The notations are based on LDFPI [128] and IRN [129],
respectively. The reconstruction model can be given as
∑ λ^ = − + ∇
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where ‖∇ ‖z TV indicates the isotropic TV regularization defined in
(8). The Euler–Lagrange equation for the energy function in (19) is
given by the following nonlinear system:

( )∑ λ∇ ( ) = − − =
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z H H z y L zE 0
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where ( )β= ∇⋅ ∇ ∇ +L z/z
2 , which is the matrix form of a central

difference approximation of the differential operator, with ∇⋅
being the divergence operator. This is a nonlinear equation for z .
To transform the functional to a linear PDE, smooth approximation
strategies need to be adopted. LDFPI, which was first introduced
by Vogel [128], linearizes the differential term by lagging the dif-

fusion coefficient β∇ +z1/ 2 one iteration behind. Thus +zn 1 is
obtained as the solution to the approximated linear equation
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Usually, half-point discretization [133] is used to approximate
Lz

n. To solve the linear PDE above, a CG or PCG method is desirable.
IRN is a method which can minimize the lp norm ( ≤p 2) by ap-
proximating it with a weighted l2 norm [129].
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where ( )= −W udiag p 2 . Introducing the idea into the energy
function in (22), the functional can be expressed as
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Euler–Lagrange function can be linearized as

∑ ∑λ− ∇ ˜ ∇ =
( )

+
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥H H W z H y

26k
k
T

k
T

R
n n

k
k
T

k
1

The weight matrix W̃R
n can by calculated by (23)–(25) using zn.

It appears that LDFPI and IRN are two different methods; however,
they are almost the same in essence when dealing with the

−l norm1 problem by smooth approximation. In fact, all the algo-
rithms mentioned above obtain similar results with TV mini-
mization, including LDFPI, IRN, MM, and the half-quadratic algo-
rithm, where lagged iteration was used. Consequently, they can be
inferred from each other by transformation. This category of
methods is simple to implement, and can be extended to deal with
the regularized inversions with various norms.

3.2.6.2. Primal–dual/splitting algorithms. The second group of
methods split the original optimization task into a primal problem
and a dual formulation of this problem. In recent years, abundant
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related studies have been presented, such as the alternating di-
rection method of multipliers (ADMM) [131,134], the primal–dual
(PD) based algorithms [105], the Douglas-Rachford algorithm
[135], proximal forward backward splitting (PFBS) [130], and the
split-Bregman (SB) method [102]. ADMM is one of the most pre-
valent methods for convex optimization in image processing. It
converts the optimization of the original nonlinear problem into
looking for a saddle point of an augmented version of the classical
Lagrange function [131]. Given the original model as (19), it can be
expressed as the following with an auxiliary variable b introduced

∑ λ‖ − ‖ + ‖ ‖ ∇ =
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To transform (27) to generate an unconstrained problem, the
augmented Lagrangian can be rewritten as
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where u is the introduced as Lagrangian multiplier, and τ > 0 is the
penalty parameter. It is easy to minimize the objective function in
(28) with respect to either z or b. The optimization expression can
be given by (29)
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For a fixed b, it turns out to be a quadratic functional for the
variable z . The generalized shrinkage formula in the second for-
mula is usually employed to solve the minimization problem for

+bn 1. Finally, the residual term is added to refine the optimization
process. Through the alternating iterations, the variables can fi-
nally converge to the solution of the original model [131]. The
model can be easily extended to more complex models, e.g., a non-
quadratic functional with an −l norm1 data fidelity term.

The relationships between these methods have been discussed
in detail in [136]. The Bregman iterative regularization method,
the Douglas-Rachford algorithm, and ADMM have been shown to
be equivalent under the assumption of linear constraints [136,137].
The most promising aspect of these methods is that by splitting
the original large-scale inverse problem into several sub-problems,
the computational efficiency can be greatly improved. In general,
the PD-based methods are faster than the optimization algorithms
based on smooth approximation.

There are also other fast and robust optimization methods for
image SR. For example, graph-cut based methods can be applied
for the minimization of graph-based energy functions [138,139].

3.3. The main challenges for image super-resolution

Although SR techniques have been developed for three dec-
ades, there are some pivotal difficulties. In this section, the main
challenges for image SR and the corresponding strategies to deal
with these issues are discussed. The challenges are: (1) SR with
complex motion conditions; (2) SR without multiple LR images;
and (3) acceleration strategies for “big data” processing.

3.3.1. Super-resolution with complex motion conditions
It is a big challenge to achieve accurate motion estimation in

complex motion conditions. As a result, the performance of the
reconstruction-based SR algorithms is significantly affected. Re-
searchers have therefore attempted to deal with the problems
brought about by inaccurate motion registration. The solutions
include more advanced registration strategies, robust fidelity
models, joint parameter estimation, and methods without explicit
motion estimation.

3.3.1.1. Advanced registration strategies. In simulated cases, the
sub-pixel motion fields between the reference frame and the other
frames can be described by a parameter model (e.g., pure trans-
lation or global affine warp). However, they have to be estimated
point-wise or block-wise under most practical cases with more
complicated motion conditions. Optical flow estimation [140] is
one of the representative methods to obtain a relatively accurate
motion field of all the points. However, the optical flow based
methods are computationally expensive [141] and are sensitive to
noise, large displacements, and illumination variation [142]. To
increase the accuracy of motion estimation in SR, advanced re-
gistration methods are necessary. Baboulaz and Dragotti [143]
proposed an advanced method to extract features in LR images for
registration by taking a sampling perspective. Su et al. [144] at-
tempted to avoid inaccurate flow estimation by accurately esti-
mating the local flow, based on the sparse feature point
correspondences.

3.3.1.2. Robust fidelity models. Although more accurate registration
methods have been applied, motion errors are inevitable in real
cases. Researchers have therefore tried to overcome the influence
of inaccurate registration from the perspective of model con-
struction. The effects of the registration error are mainly embodied
in the data fidelity term, which provides a constraint for the
conformance of the reconstructed HR image to the observed LR
image. As mentioned in Section 3.2.2, the l1 norm performs more
robustly in dealing with registration errors than the l2 norm [43].
Thus, −l norm1 based SR methods can effectively overcome the
influence of motion errors. In addition, as expressed in (5), LR
images with a large registration error will make less contribution
in the reconstruction process by importing the adaptive channel
function wk [145]. The weight wk is usually set as inversely pro-
portional to ‖ − ‖y H zk k p

p ( ≤ ≤p1 2), and thus reduces the effect of
model errors. However, both the −l norm1 based and weighted
models need an extra registration method for motion estimation.
Furthermore, the relatively poor convergence performance limits
their application.

3.3.1.3. Joint parameter estimation. One of the most popular stra-
tegies for improving the reconstruction performance is the joint
methods. These approaches (discussed in Section 3.2.5) can obtain
better registration results and exclude errors during the iteration
by simultaneously estimating the motion parameters and the re-
construction result. Specifically, Tom and Katsaggelos [146] de-
veloped a simultaneous registration and reconstruction approach
where they formulated the SR problem in the ML framework, and
solved it using an expectation-maximization algorithm. Hardie
et al. [100] combined a joint approach and a MAP framework to
reconstruct the HR image.

The common assumption is that the blur kernel is known in the
reconstruction system. The ill-posed inverse problem can be
solved by selecting the appropriate PDF of z and s. The choice of
prior model ( )zU and ( )sU in (15) should accurately describe the
characteristics of the realization. However, it is a difficult task to
determine the regularized constraint of s, which is related to the
motion model, and it is usually set as constant with a global mo-
tion model. If there is more complicated motion, different strate-
gies could be adopted. Shen et al. [62] proposed a joint method
combining motion estimation, object-based segmentation, and SR.
This method can handle the SR problem with multiple moving
objects by iteratively updating the motion fields, segmentation
fields, and the HR image. He et al. [126] proposed a nonlinear
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least-squares technique for motion models, including both trans-
lation and rotation. Furthermore, Tian and Yap [147] proposed a
method for SR with a zooming motion and employed ‖ − ˜‖s s 2 as
the PDF of ( )sp , where s̃ is the initial estimate of the motion
vectors. Overall, joint super-resolution is an effective way to un-
dertake SR without accurate registration. However, relatively
complex models and extra parameters mean that the methods
have not been widely applied. Of course, Bayesian methods can
also prevent the propagation of estimation errors for the motion
fields [53,72].

3.3.1.4. Super-resolution without explicit motion estimation. In re-
cent years, SR methods without explicit motion estimation have
become popular. The motivation behind these methods is to seek
an SR algorithm that is able to process sequences with a general
motion pattern. Protter et al. [148] generalized the nonlocal-means
(NLM) algorithm to perform SR reconstruction. Rather than cal-
culating the data fidelity globally, the method divides both the LR
images and the estimated HR image into patches to accumulate
the weighted residuals of the similar patches. By constructing a
penalty function combining fuzzy motion estimation and a patch-
based approach, it allows the algorithm to handle diverse motion
models. Following this work, Takeda et al. [54] adapted kernel
regression to multi-frame SR, and this method is able to handle
video sequences with general motion models. Protter and Elad
[113] presented a new framework in which the pixel-wise motion
field in each pair of images is replaced with a probabilistic motion
field. One of the main concerns about SR methods without explicit
motion estimation is the computational efficiency, since most of
them adopt a patch-based manner and require iteration to obtain
the final result.

3.3.2. Super-resolution without multiple low-resolution images
The goal of SR is to recover the HR details which are un-

observable in the LR images. Usually, the details are recovered by
combining the information across multiple LR images. However, in
the real world, sufficient images with supplementary information
are sometimes difficult to acquire. The performance of the re-
construction-based algorithms degrades when the magnification
factor is large. Thus, researchers have turned to study SR methods
for use with a single image, where the observation model is si-
milar to (1) as =K 1.

Single-frame SR should not be confused with similar techni-
ques, such as image interpolation and reconstruction methods
using little extra information. The high-frequency details cannot
be reconstructed without supplementary information. For ex-
ample, the reconstruction-based methods [91,149–154] involve
image priors to “hallucinate” information lost during the image
acquisition. Differing from the priors commonly used in multi-
frame SR, the single-frame priors are typically designed to reduce
edge artifacts and estimate the HR details with little additional
external information. Although the edge-preserving operators can
remove the ringing artifacts in image resolution enhancement, the
main deficiency with mid-frequency textures prevents the meth-
ods being effective when the magnification factor is large [11]. In
other words, these approaches cannot satisfy our everyday re-
quirements, because of the limited information involved in the
reconstruction model. Consequently, we do not regard traditional
interpolation and reconstruction-based methods as SR in this
review.

Distinguished from the traditional interpolation methods, sin-
gle-frame SR learns the correspondence between the low- and
high-resolution information from an external database, and thus
restores the details in the HR space. As with the rapid develop-
ments in machine learning, much attention has been paid to ex-
ample-based SR in recent years. The example-based algorithms
[11,12,155–159] either exploit the internal similarities of the same
image, or learn the correspondences between the LR and HR image
patches from external low- and high-resolution exemplar pairs. In
the early stage, patch or feature-based approaches were used to
learn the generic relationship between the LR and HR image de-
tails [12,160,161]. As a representative work, Freeman et al. [12]
employed an MRF framework to learn the prediction from LR to
HR images. However, these methods are usually computationally
expensive and depend on the similarity between the training set
and the test set. As a result, neighbor embedding (NE) methods
and sparse coding methods have since been proposed.

The NE-based approaches assume that the small patches in the
HR and LR images form similar manifolds in two distinct feature
spaces [155–157,162,163]. Chang et al. introduced locally linear
embedding (LLE) [155] to predict the HR patch as a linear com-
bination of nearest neighbors from the training dataset, via
learning the mapping relationship from the LR to HR space. In this
way, the NE-based methods require fewer training samples and
can be applied to a variety of images. However, the crucial pro-
blems of the NE-based methods are the blurring effects due to
over- or under-fitting with the strictly fixed neighborhood size.
Moreover, the LR-HR feature mappings cannot be effectively es-
tablished through learning high-resolution information from the
low-dimensional space.

To overcome the limitations, sparse coding (SC) approaches
[11,159,164–166] attempt to incorporate sparse signal re-
presentation to form a learned overcomplete dictionary, and have
obtained quite promising results. Supposing that the image can be
represented as a sparse linear combination with an overcomplete
dictionary ψ and the corresponding coefficient vector α with very
few nonzero entries, then the image patch can be given as ψα=x .
In the concept of SR, for each input LR patch yr , the sparse re-
presentation will be found with respect to ψl, and the HR patch zr

can be generated according to the HR dictionary ψh and the
coefficients. The target is to find the sparsest representation of α
and the corresponding HR image by optimizing the energy func-
tion. The unified framework [11] can be interpreted as

{ }
∑

( )
ψ α αβ τ λ^ = − + − + ( ) + ( )

α
⎪ ⎪
⎪ ⎪⎧
⎨
⎩
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where αi j, denotes the representation coefficients for the ( )i j, th
patch of z , α denotes the concatenation of all αi j, , and Pi j, is a
projection matrix which selects the ( )i j, th patch from z . The ( )zU
indicates the prior term for the reconstructed image, as discussed
in Section 3.2.3. By tuning λ and β , the model is able to control the
tradeoff between matching the LR input and finding a HR patch
which is compatible with its neighbors. In addition, τ can achieve
the goal of simultaneously suppressing the noise.

The main advances since then include different training ap-
proaches for the dictionary pair [159,166,167], efficiency im-
provements [168], and various coding strategies [164,169]. In the
work of Yang et al. [11], the coefficient α is assumed to be the same
with respect to both the LR and HR dictionaries. However, further
studies claimed that the differences and connections between the
coefficients for the dictionaries should not be ignored [166,170].
This is another tough task for single-image SR based on sparse
representation. Other researchers have developed regression-
based methods and some improved algorithms, such as the SR
method with sparse NE [156], image SR using nonlocal auto-
regressive modeling [159], and anchored neighborhood regression
[171] for fast example-based SR. Recently, Dong et al. [172] pre-
sented the sparse coding based SR method, which can also be
viewed as a kind of convolutional neural network with a different
nonlinear mapping, and applied deep learning to learn an end-to-
end mapping between the LR and HR images.
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Fig. 9. Results for the Girl image with a magnification factor of 3. Top row: The LR image, NE [156], the TV-based method [47], and SC [11]. Bottom row: ASDS-AR-NL [159],
SRCNN [172], SPM [166], and the original image.

Fig. 10. The SR reconstruction of (a) a QCIF sequence [1] and (b) the Bicycle sequence [73]. The first row indicates the reference LR frames, while the second row presents the
corresponding reconstruction results.
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Fig. 11. The SR reconstruction of the Walk sequence (top row) [184] and a UAV surveillance sequence (bottom row) [66]: (a) indicates the reference LR frames, while
(b) presents the corresponding reconstruction results.
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We present the experimental results of single-image SR fol-
lowed by down-sampling by a scale factor of 3. Fig. 9 shows the
reconstructed HR Girl images by the use of different methods.
With known degradation parameters, the TV reconstruction based
method [47] is effective in recovering the texture, but it generates
piecewise constant block artifacts. With external information
learning, all the example-based SR methods can achieve effective
reconstruction results in terms of visual plausibility, and obtain
sharper edges. However, the NE method [156] has a limited ability
to model visually complex texture, due to its high dependency on
the quality of the samples in the database. The SC [11] approach
expects to learn more effective information by constructing a joint
dictionary. However, it is not sufficient to use a single mapping to
describe the complex relationship between different image patch
pairs. Exploiting nonlocal self-similarities between patches,
learning mapping functions between patches, and employing
reasonable assumptions for an image can allow better image re-
covery, as in the ASDS-AR-NL [159] and SPM [166] methods.

Furthermore, single-frame SR offers the potential to overcome
the insufficient number of LR images, and has played a significant
role in some specific domains such as face hallucination [173,174],
license plate recognition [175], medical analysis [176,177], and
satellite imaging [118], where diagnosis or analysis from few low-
quality images can be extremely difficult.

3.3.3. Acceleration strategies for big data processing
There is a trend to use SR methods on large datasets, which are

referred to as “big data”. As a result, it is essential to develop
methods that are both effective and efficient enough to satisfy the
demand of the modern industrial applications.

Although abundant optimization methods have been proposed
for fast SR (Section 3.2.6), the efficiency is still far away from the
requirements of real-time applications. Other strategies for speed
need to be developed. Zhang et al. [178] presented two methods
for fast SR based on recursive multilevel reconstruction and par-
allel image reconstruction. It has to be mentioned that ADMM is
well suited to parallelized mechanism for solving large-scale sta-
tistical tasks. Moreover, spatially adaptive block-based methods
[73,179,180] are commonly used approaches. However, a de-
blocking process is always necessary to reduce the edge artifacts.

Alternatively, cloud computing is a simple and efficient solu-
tion, which can provide computing and storage services over the
Internet [181]. Users can accomplish their goals on a very powerful
computing platform employing a “super computer” [182].
4. Applications

After reviewing the methodologies above, let us return to the
specific applications of SR in our daily life, which are the most
basic concern. In the last three decades, various applications of SR
have been addressed. In the following subsections, we give some
examples of SR in the significant application fields.
4.1. Regular video information enhancement

The application of SR techniques has entered our daily life. LR
video images can be converted to high-definition images using SR
techniques. Hitachi Ltd. achieved the conversion of standard de-
finition TV (SDTV) to high-definition television (HDTV) using SR
technology for videos, which makes SR a particularly interesting
and relevant research topic [183]. The related results can be found
on the website http://www.engadget.com/2009/01/12/eyes-on-
with-hitachi-super-resolution-tv/, where all the details in the
frame are clearly enhanced.

Fig. 10 shows the SR results for some daily scenes. The QCIF
video sequence was processed by 3-D ISKR [1], while the Bicycle
sequence was handled by the method in [73]. These typical ex-
amples show the effectiveness of SR techniques when dealing with
motion outliers caused by multiple moving objects, which is
common in real scenes. Furthermore, Apple Inc. announced that
they have applied for a patent of SR-based optical image stabili-
zation. SR techniques will be employed in our phones, computers,
and tablets someday sooner or later.
4.2. Surveillance

Nowadays, digital video recorder (DVR) devices are every-
where, and they play a significant role in applications such as
traffic surveillance and security monitoring. It is, however, im-
possible for the moment to equip large-scale HR devices. Thus, it is
necessary to study image SR techniques. Fig. 11 gives two ex-
amples of SR for the Walk sequence [184] and a UAV surveillance
sequence [66]. Although the techniques have developed progres-
sively, the practical use of video SR is still a challenge. Firstly,
outdoor video devices are vulnerable to the impact of weather
conditions. Moreover, video data usually feature a huge amount of
data and complex motion. Some algorithms can deal with the
motion outliers, but the computational efficiency limits their ap-
plication. Compressed video SR has also been a focus [185,186].



Fig. 12. The SR results of (a) an MRI [2] image and (b) a PET [67] image. The first column is the original LR images, and the second column shows the corresponding SR
results.

L. Yue et al. / Signal Processing 128 (2016) 389–408402
4.3. Medical diagnosis

Various medical imaging modalities can provide both anato-
mical information about the human body structure and functional
information. However, resolution limitations always degrade the
value of medical images in the diagnosis. SR technologies have
been used with the key medical imaging modalities, including
magnetic resonance imaging (MRI), functional MRI (fMRI), and
positron emission tomography (PET) [187]. The goal is to increase
the resolution of medical images while preserving the true iso-
tropic 3-D imaging. Medical imaging systems can be operated
under highly controlled environments, and thus continuous and
multi-view images can be easily acquired. Fig. 12 indicates the SR
results on human brain MRI data [2] and a respiratory synchro-
nized PET image, respectively [67].

Example-based SR for single frames has been also applied in
the medical imaging field, by collecting similar images to establish
a database [176,188]. The following example presented in Fig. 13 is
the reconstructed image of the single MRI image of the knee in
[176]. The training database was established with a set of five
standard images, including computed tomography (CT) and MRI
images from various parts of the human body.
Fig. 13. The single-frame SR result on the MRI knee image with a magn
4.4. Earth-observation remote sensing

As we know, the first SR idea in [31] was motivated by the
requirement to improve the resolution of Landsat remote sensing
images. The idea of applying SR techniques to remote sensing
imaging has been developed for decades. Though data satisfying
the demand for SR are not easy to obtain, there have been a few
successful applicable examples for real data [25,27,28,189–191].
Among them, the resolution of the panchromatic image acquired
by SPOT-5 can reach 2.5 m through the SR of two 5-m images
obtained by shifting a double CCD array by half a sampling interval
(Fig. 3), which was the most successful case [27,192]. In addition,
Shen et al. [28] proposed a MAP algorithm and tested it with
moderate-resolution imaging spectroradiometer (MODIS) remote
sensing images, as shown in Fig. 14. Moreover, satellites can ac-
quire multi-temporal or multi-view images for the same area, e.g.
Landsat, CBERS, and WorldView-2, and thus provide the possibility
for SR [25,191]. An example is also given in Fig. 14, which in-
corporates five angular images provided by the WorldView-2 sa-
tellite for SR [25]. SR for the spectral unmixing of fraction images
has been widely studied to acquire a finer-resolution map of class
labels, and is known as sub-pixel mapping [193–195]. Researchers
have also attempted to apply the example-based methods to
ification factor of 4 [176]. (a) The original LR data. (b) The SR result.



Fig. 14. The SR reconstruction of remote sensing images: (a) and (b) indicate the LR and HR images, respectively. The first row shows the test on multi-temporal MODIS
images with a magnification factor of 2 [28]. The second row is the SR example for multi-angle WorldView-2 images with a magnification factor of 2 [25].
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remotely-sensed image SR [196,197].
Recently, Skybox Imaging planned to launch a group of 24

small satellites, which can provide real-time “videos” with a sub-
meter resolution using SR techniques [16,198]. At the moment,
SkySat-1 and SkySat-2 have been launched and put into use. By
incorporating approximately 20 frames, the ground-based dis-
tance (GSD) of the output image can be decreased to 4/5 of the
original data [16]. This is a great opportunity to bring SR techni-
ques into our daily life.

The main challenges for remotely-sensed image SR are to
overcome the scene changes due to temporal differences, and to
Fig. 15. SR example of astronomical images: (a)
adapt the existing methods to massive amounts of observations
every day.

4.5. Astronomical observation

The physical resolution of astronomical imaging devices limited
by system parameters also provides a chance for SR techniques to
play a role. Astronomical systems can typically collect a series of
images for SR. By improving the resolution of astronomical images,
SR can help astronomers with the exploration of outer space. A
specific example is shown in Fig. 15 [64] showing the SR of
the original LR image and (b) the SR result.



Fig. 16. The SR result of Chang’E-1 lunar images with a magnification factor of 2 [199]: (a) the original LR image and (b) the SR result.
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multiple star images.
Satellites are also now being sent into outer space, e.g. the lu-

nar exploration program and the Mars Odyssey mission. Fig. 16
indicates an SR example of Chinese Chang’E-1 lunar images [199],
where the result was reconstructed based on three views. The SR
can enhance the image resolution, and thus improve the dis-
cernibility of small objects on the moon's surface. Beyond this,
Hughes and Ramsey [200] used Thermal Emission Imaging System
(THEMIS) thermal infrared and visible datasets from different
spectral regions to generate an enhanced thermal infrared image
of the surface of Mars.

4.6. Biometric information identification

SR is also important in biometric recognition, including re-
solution enhancement for faces [24,201,202], fingerprints [203],
and iris images [65,204]. The resolution of biometric images is
pivotal in the recognition and detection process. To deal with the
LR observations, a common approach is the development of high-
quality images from multiple LR images. Based on the redundancy
and similarity in the structured features of biometric images, ex-
ample-based single-frame SR with an external database is an
Fig. 17. The SR results for face [205], fingerprint [203], and iris images [189], respectively
(a) Face hallucination, (b) fingerprint reconstruction, and (c) iris reconstruction.
effective way of resolution enhancement [11]. We give three cases
of biometric image reconstruction in Fig. 17 [203,205,206]. Using
SR, the details of the shapes and structural texture are clearly
enhanced, while the global structure is effectively preserved,
which can improve the recognition ability in the relevant
applications.
5. Discussion and conclusions

In this article, we intended to convey the concept, develop-
ment, and main applications of super-resolution (SR) over the past
three decades. The main progress in SR techniques can basically be
divided into three stages. In the first decade, researchers shifted
their attention from the study of frequency domain methods to
spatial domain algorithms. Regularized multi-frame SR framework
were the main focus in the second stage. The Bayesian MAP fra-
mework became the most popular technique due to its good
performance and flexible characteristics. In recent years, however,
the development of multi-frame SR has slowed down, and re-
searchers have mainly focused on SR reconstruction in the various
application fields. Unfortunately, the extensive practical use of SR
. The first row is the LR image, while the second row shows the reconstructed result.
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still remains a problem. There has been a bottleneck-style di-
lemma in the development of multi-frame SR, while example-
based SR for single images has become a hot issue. However, the
performance of these algorithms depends on the reliability of the
external database.

So what should we do in further studies? More advanced,
adaptive, and faster methods with extensive applicability are al-
ways desirable. In addition, methods should be closely combined
with actual requirements. The rapid development of hardware
devices will also bring new challenges to the application of the SR
framework. For instance, the Google Skybox project will provide
us with an opportunity to obtain real-time HR “earth-observation
videos” using remotely-sensed image SR. The concept of SR has
also been extended to related fields such as fluorescence micro-
scopy [17,207–209] and multi-baseline tomographic synthetic
aperture radar (SAR) imaging [210,211]. Moreover, researchers
have attempted to apply the single-frame SR techniques to the
processing of medical and remote sensing imagery. However, the
practicability of these methods is still limited by the relatively
poor performance and time consumption, and acceleration stra-
tegies are essential for large-scale applications. In conclusion, the
future of SR is still in our hands.
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