
Copyright ©2018 The Khronos™ Group Inc. - Page 1

Standardizing All the Realities:
A Look at OpenXR

Nick Whiting
GDC, March 2018

Copyright ©2018 The Khronos™ Group Inc. - Page 2

Agenda
• A Note on What We’ll Cover

• A Brief History of the Standard

• Goals and Philosophies

• The Standard Itself
- API Conventions and Primitives
- The Instance, the System, and the Session
- Input and Haptics
- Rendering and Frame Timing
- Layers and Viewports
- Device Plugin Extension
- Extensions

• Where Do We Go From Here

• Questions

Copyright ©2018 The Khronos™ Group Inc. - Page 3

A Note on What We’ll Cover

Copyright ©2018 The Khronos™ Group Inc. - Page 4

A Note on What We’ll Cover
• A Quick Introduction to the Spec
- Proviso: This is still a work in progress!

Things might change between now and the release of the spec.
- Talk assumes that you know:
- A little bit about VR and AR
- A little bit about programming, and very basic real-time rendering
- Nothing about the specification process
- Nothing about any other Khronos specifications

- This talk will not cover the whole spec!
- We’ll focus on what is (mostly) well-defined at this point
- There are entire systems that aren’t ready to be covered yet

• Ample time will be given for Questions at the end!
- The spec is long…there may be some questions I can’t answer
- I can’t answer questions about systems that aren’t stabilized
- No, you can’t ask when it’ll be released.

Copyright ©2018 The Khronos™ Group Inc. - Page 5

A Brief History of the Standard

Copyright ©2018 The Khronos™ Group Inc. - Page 6

Copyright ©2018 The Khronos™ Group Inc. - Page 7

A Brief History of the Standard
Call for Participation / Exploratory Group Formation

Fall F2F, October 2016: Korea

Statement of Work / Working Group Formation
Winter F2F, January 2017: Vancouver

Specification Work
Spring F2F, April 2017: Amsterdam

Specification Work
Interim F2F, July 2017: Washington

Defining the MVP
Fall F2F, September 2017: Chicago

Resolving Implementation Blockers
Winterim F2F, November 2017: Washington

Raising Implementation Issues
Winter F2F, January 2018: Taipei

First Public Information!
GDC, March 2018: Right Here, Right Now!

Provisional Release

Ratification and Release

Conformance Testing and Implementation

Present Day
Coming Soon

Copyright ©2018 The Khronos™ Group Inc. - Page 8

Goals and Philosophies

Copyright ©2018 The Khronos™ Group Inc. - Page 9

The Problem

Copyright ©2018 The Khronos™ Group Inc. - Page 10

The Solution

Copyright ©2018 The Khronos™ Group Inc. - Page 11

OpenXR Philosophies
Enable both VR and AR applications
The OpenXR standard unified common VR and AR functionality to streamline
software and hardware development for a wide variety of products and platforms

Be future-proof
While OpenXR 1.0 is focused on enabling the current state-of-the-art, the standard is
built around a flexible architecture and extensibility to support rapid innovation in
the software and hardware spaces for years to come

Do not try to predict the future of XR technology
While trying to predict the future details of XR would be foolhardy, OpenXR uses
forward-looking API design techniques to enable designers to easily harness new and
emerging technologies

Unify performance-critical concepts in XR application development
Developers can optimize to a single, predictable, universal target rather than add
application complexity to handle a variety of target platforms

1
2

3
4

Copyright ©2018 The Khronos™ Group Inc. - Page 12

The Structure

Application

OpenXR Application Layer

Runtime A

Runtime B

VR / AR Hardware

OpenXR Device Plugin Extension

VR / AR
Hardware

VR / AR
Hardware

Copyright ©2018 The Khronos™ Group Inc. - Page 13

Layered API

Application

OpenXR Application Layer

Runtime B

OpenXR Device Plugin Extension

VR / AR
Hardware

VR / AR
Hardware

xrDoSomething()

Layer1::xrDoSomething()

LayerN::xrDoSomething()

MyRuntime::xrDoSomething()

Copyright ©2018 The Khronos™ Group Inc. - Page 14

Standard Overview

Copyright ©2018 The Khronos™ Group Inc. - Page 15

API Conventions and Primitives
Handles

Objects which are allocated by the runtime on behalf of the application are
represented by handles

Handles are:

• Opaque identifiers to the underlying object

• Lifetime generally managed by xrCreate* and xrDestroy* functions

• Requests for the same underlying object will return the same handle

• Hierarchical
- E.g. To create an XrSystem handle, you must pass in a parent XrInstance
- Handles for children are only valid within their direct parent’s scope

• Typed using XrObjectType enumeration

Copyright ©2018 The Khronos™ Group Inc. - Page 16

API Conventions and Primitives
Semantic Paths

Semantic paths (XrPath) are a hierarchical string representation of something in the
OpenXR ecosystem:

• Spaces

• Devices and their Input Sources

• Viewport Configurations

Examples:
/devices/my_vendor/my_device
/user/hand/left
/user/hand/primary
/user/head
/devices/my_vendor/my_controller/input/thumbstick/x
/viewport_configuration/vr

Copyright ©2018 The Khronos™ Group Inc. - Page 17

API Conventions and Primitives
Semantic Paths

Properties of XrPaths:

• Hierarchical

• Can be aliased
- /user/hand/left ==
/user/hand/primary

• Stored in a string table

• Human-readable

• Can be pre-defined (reserved) or

application-defined

• Handles

• CaSe InSeNsItIvE

•[A-Z, a-z,0-9,-,_,.,/]
• Null terminated

• Not file paths!
- Can’t use ./ or ../ pathing

Copyright ©2018 The Khronos™ Group Inc. - Page 18

API Conventions and Primitives
Semantic Paths

Some paths are reserved by the specification for special purposes:

/user/hand/left, user/hand/right
/user/hand/primary, user/hand/secondary
/user/head
/devices/<vendor_name>/<device_name>
/devices/<vendor_name>/<device_name>/<identifier>/<component>

where <identifier> is: thumbstick, trigger, system, etc.

and <component> is: click, touch, value, delta_x, etc.

Copyright ©2018 The Khronos™ Group Inc. - Page 19

API Conventions and Primitives
XrSpace
XrSpace is one of the fundamental concepts
used throughout the API to help with making a
generalized understanding of the physical
tracking environment

•XrSpaces define meaningful spaces within the
environment, which can be related to one
another, and used as a basis for functions that
return spatial values

• The Runtime can hold any representation it
wants internally, and can adjust them as new
data is acquired

• XrSpaces can also track dynamic objects, such
as motion controllers, for ease of reference

+y

+x

+z

+x

+y

/spaces/eye_level

/spaces/hand/left

Runtime Space (Hidden)

Copyright ©2018 The Khronos™ Group Inc. - Page 20

The Instance, the System, and the Session

Application

xrCreateInstance Loader

OpenXR Runtime A

OpenXR Runtime B

OpenXR Runtime C

KHR_Extension_1

KHR_Extension_3

KHR_Extension_1

EXT_Extension_7

…

…

xrCreateSystem

xrBeginSession

Loader:
• Not required to use the OpenXR loader, but we have one
• Complexity can vary from “just pick one” to more intelligent

decisions based on user factors, hardware, running apps, etc
• Some platforms have very particular requirements (i.e.

Android)

Copyright ©2018 The Khronos™ Group Inc. - Page 21

The Instance, the System, and the Session
XrInstance:
• The XrInstance is basically the application’s representation

of the OpenXR runtime
• Can create multiple XrInstances, if supported by the

runtime
• xrCreateInstance specifies app info, layers,

and extensions

Application

xrCreateInstance Loader

OpenXR Runtime A

OpenXR Runtime B

OpenXR Runtime C

KHR_Extension_1

KHR_Extension_3

KHR_Extension_1

EXT_Extension_7

…

…

xrCreateSystem

xrBeginSession

Copyright ©2018 The Khronos™ Group Inc. - Page 22

The Instance, the System, and the Session
XrSystem:
• OpenXR groups physical devices into logical systems of

related devices
• XrSystem represents a grouping of devices that the

application chooses to use (e.g. HMD and controllers)
• XrSystems may have display, input, tracking, etc.

Application

xrCreateInstance Loader

OpenXR Runtime A

OpenXR Runtime B

OpenXR Runtime C

KHR_Extension_1

KHR_Extension_3

KHR_Extension_1

EXT_Extension_7

…

…

xrCreateSystem

xrBeginSession

Copyright ©2018 The Khronos™ Group Inc. - Page 23

The Instance, the System, and the Session

Session:
• A session is how an application indicates it wants to render

and output VR / AR frames
• An app tells the runtime it wants to enter an interactive

state by beginning a session with xrBeginSession and
ending it with xrBeginSession

• No session, no frames.

Application

xrCreateInstance Loader

OpenXR Runtime A

OpenXR Runtime B

OpenXR Runtime C

KHR_Extension_1

KHR_Extension_3

KHR_Extension_1

EXT_Extension_7

…

…

xrCreateSystem

xrBeginSession

Copyright ©2018 The Khronos™ Group Inc. - Page 24

Events

Events are messages sent from the runtime to the application. They’re put into a
queue by the runtime, and read from that queue by the application by xrPollEvent

Visibility Changed Whether or not the application is visible on the device

Focus Changed Whether or not the application is receiving input from the system

Request End Session Runtime wants the application to yield to another application

Request End Instance Call xrDestroyInstance, because the runtime needs to update

Availability Changed Device attached or lost

Engagement Changed Device is put on or taken off

Copyright ©2018 The Khronos™ Group Inc. - Page 25

Input and Haptics

Input in OpenXR goes through a layer of
abstraction built around Input Actions
(XrActions). These allow application
developers to define input based on resulting
action (e.g. “Move,” “Jump,” “Teleport”)
rather than explicitly binding controls

While the application can suggest recommended
bindings, it is ultimately up to the runtime to
bind input sources to actions as it sees fit
(application’s recommendation, user settings in
the runtime’s UI, etc)

XrAction: “Teleport”

OpenXR Runtime

.../input/trigger/click Teleport

.../input/grip/value SpawnKittens

.../input/button_a/click Explode

/user/hand/left/input/trigger/click
(/devices/ControllerCorp/fancy_controller/

input/trigger/click)

…

ControllerCorp

Copyright ©2018 The Khronos™ Group Inc. - Page 26

Input and Haptics
Forcing applications through this indirection has
several advantages:

• Greater future-proofing as improvements to
hardware, new form factors, and runtimes
come out

“Dev teams are ephemeral,
platforms are forever”

• Allows for runtimes to “mix-and-match”
multiple input sources

• Easy optional feature support (e.g. body
tracking)

• Allows hardware manufacturers a pool of
existing content to use with their new devices

XrAction: “Teleport”

OpenXR Runtime

.../input/trigger/click Teleport

.../input/grip/value SpawnKittens

.../input/button_a/click Explode

/user/hand/left/input/trigger/click
(/devices/ControllerCorp/fancy_controller/

input/trigger/click)

…

ControllerCorp

Copyright ©2018 The Khronos™ Group Inc. - Page 27

Input and Haptics
XrActions are created with the following information:
• Action Name: A name to reference the action by (e.g. “Teleport”)

• Localized Name: A human-readable description of the action, localized to the system’s
current locale

• Action Set: The logical grouping of actions this action belongs to (NULL for global)

• Suggested Binding: Optional, but suggests which bindings for known devices the application
developer recommends.

• Action Type:
Suggested Binding Restrictions

XR_INPUT_ACTION_TYPE_BOOLEAN If path is a scalar value, a threshold must be applied. If not a value, needs to be bound to
…/click

XR_INPUT_ACTION_TYPE_VECTOR1F If path is a scalar value, then input is directly bound. If the bound value is boolean, the runtime
must supply a 0.0 or 1.0 as the conversion

XR_INPUT_ACTION_TYPE_VECTOR2F Path must refer to parent with child values …/x and …/y

XR_INPUT_ACTION_TYPE_VECTOR3F Path must refer to parent with child values …/x, …/y, and …/z

Copyright ©2018 The Khronos™ Group Inc. - Page 28

Input and Haptics
There is another type of XrInputAction, XR_TYPE_ACTION_STATE_POSE, which
allows for adding new tracked devices into the scene

xrGetActionStatePose allows the application to get the following information,
using the specified XrSpace as a basis:

- Pose (position and orientation)
- Linear Velocity (m/s^2)
- Angular Velocity
- Linear Acceleration
- Angular Acceleration

For some devices, not all data is available. Validity can be checked using
XrTrackerPoseFlags

Copyright ©2018 The Khronos™ Group Inc. - Page 29

Input and Haptics
XrActions can be grouped into XrActionSets to reflect different input modalities
within the application

For example, in Kitten Petter VR, you might be in kitty petting mode, or in UI mode,
and have different input actions for each:

The application can then swap between which XrActionSet (or Sets) when it syncs
action state in xrSyncActionData

XrActionSet: Kitten_Petting

.../input/trigger/click Teleport

.../input/grip/value SpawnKittens

.../input/button_a/click SpawnYarnBall

…

XrActionSet: UI_Mode

.../input/trigger/click ChangeMenu

.../input/trackpad/delta_y ScrollMenu

.../input/button_a/click SelectItem

…

Copyright ©2018 The Khronos™ Group Inc. - Page 30

Input and Haptics

We can also flip things, and figure out what device input that a particular XrAction
is bound to. This is useful for prompts like “Pull the Trigger to Teleport!”

Pull the Trigger to Teleport!

OpenXR Runtime

.../input/trigger/click Teleport

.../input/grip/value SpawnKittens

.../input/button_a/click Explode

/user/hand/left/input/trigger/click
(/devices/ControllerCorp/fancy_controller/

input/trigger/click)

…

xrGetHumanReadableSourceName()

“Trigger”

Copyright ©2018 The Khronos™ Group Inc. - Page 31

Input and Haptics
Haptics build upon the same XrAction system, and have their own Action Type:
XR_HAPTIC_VIBRATION. Just like other XrActions, they can be used with
XrActionSets, but unlike inputs, they are activated with xrApplyHapticFeedback

Currently, only XrHapticVibration is supported:

• Start Time

• Duration (s)

• Frequency (Hz)

• Amplitude (0.0 – 1.0)

We expect that many more haptic types will be added through extensions as the
technology develops

Copyright ©2018 The Khronos™ Group Inc. - Page 32

Frame Timing
Let’s examine frame timing first in the simplest
case of a single-threaded render loop

xrBeginFrame:

Signals that we’re ready to begin rendering
pixels to the active image in our swap chain

xrEndFrame:

We’re finished rendering, and now are ready to
hand off the compositor for presentation.
Takes a predicted display time, and layers to
present

xrWaitFrame:

Called before we begin simulation of the next
frame. This is responsible for throttling

xrBeginFrame

xrEndFrame

xrWaitFrame

(make pretties)

Copyright ©2018 The Khronos™ Group Inc. - Page 33

Frame Timing
Digging into xrWaitFrame a bit more…

Blocks on two factors:

• Swap Interval, as requested as part of XrWaitFrameDescription, which is passed in
- Swap Interval = 1: xrWaitFrame returns when it determines the application

should start drawing for the next frame at the display’s native refresh cycle
- Swap Interval = 2: xrWaitFrame skips a refresh cycle before returning
- Swap Interval = 0: Invalid, would rip a hole in space and time

• Throttling of the application by the runtime, in order to try and align GPU work with
the compositor hook time

To see what this means, let’s take a look at a slightly more complex multi-threaded
engine example…

Copyright ©2018 The Khronos™ Group Inc. - Page 34

Frame Timing

Simulation Thread

Render Thread

GPU

Compositor Frame Hook
xrEndFrame
xrBeginFrame
xrWaitFrame

Frame 100 Frame 101 Frame 102 Frame 103

• Frame 100: Late, so we hold Frame 101 until xrBeginFrame
can kick off right after the Compositor Frame Hook

• Frame 101: Ideally scheduled. xrBeginFrame happens right
after Compositor Hook for the previous frame, and GPU work
finishes in time for the next Compositor Hook

Simple Multithreaded Example
(DX11, OpenGL)

Copyright ©2018 The Khronos™ Group Inc. - Page 35

xrWaitFrame

xrBeginFrame

Frame Timing

Compositor Frame Hook
xrEndFrame

Deeply Pipelined Multithreaded Example
(Unreal Engine 4 with Vulkan, DX12, Metal)

Simulation Thread

Render Thread

Render Workers

Frame 100 Frame 101 Frame 102 Frame 103

RHI Thread

Render Workers

GPU

Render Thread Fence

Copyright ©2018 The Khronos™ Group Inc. - Page 36

Swap Chains and Rendering

xrCreateSwapchain

xrDestroySwapchain

xrAcquireSwapchainImage

xrWaitSwapchainImage

xrReleaseSwapchainImage

xrGetSwapchainImages
R

e
n
d
e
r

L
o
o
p

…
…

(make pretties)

XrSwapchains:
XrSwapchains are limited by the
capabilities of the XrSystem that
they are being created for, and can
be customized on creation based on
application needs

• Usage Flags
• Format
• Width
• Height
• Swap chain length

Copyright ©2018 The Khronos™ Group Inc. - Page 37

Compositor Layers
The Compositor is responsible for taking all the
Layers, reprojecting and distorting them, and
displaying them to the device

• Layers are aggregated by the Compositor in
xrEndFrame for display

• You can use multiple, up to the limit of the
runtime

• Have XrCompositionData:
- Type, display time, eye, and XrSpace

• Have XrCompositionLayerData:
- Swap chain, and current index

Compositor

Copyright ©2018 The Khronos™ Group Inc. - Page 38

Compositor Layers
XrCompositorLayerMultiprojection:

Most common type of Layer. This is the
classic “eye” layer, with each eye
represented by a standard perspective
projection matrix

XrCompositorLayerQuad:
Quad layers are common for UI elements, or
videos or images represented in the virtual
world on a quad in virtual world space

XR_EYE_LEFT XR_EYE_RIGHT

Copyright ©2018 The Khronos™ Group Inc. - Page 39

Viewport Configurations

Photo Credit: Dave Pape

Camera Passthrough AR Stereoscopic VR / AR Projection CAVE

One Viewport Two Viewports (one per eye) Twelve Viewports (six per eye)

/viewport_configuration/ar_mono/magic_window /viewport_configuration/vr/hmd /viewport_configuration/vr_cube/cave_vr

Applications can:
• Query the active XrSystem for its supported Viewport Configurations
• Applications can then set the Viewport Configurations that they plan to use
• Select and change their active configuration over the lifetime of the session

Runtimes can:
• Request the application change configuration, but app is not required to comply

Copyright ©2018 The Khronos™ Group Inc. - Page 40

Viewport Projections

xrGetViewportProjections()

Display Time

Space

System

In
p
u
ts

XrViewportProjectionInfo

Projections

Combined FoV

Flags (e.g. eyes tracked?)

XrViewportProjectionInfo

Gaze Direction

Projection Specification

View Transform

Eye

XrViewportProjectionInfo

Gaze Direction

Projection Specification

View Transform

Eye

…

Copyright ©2018 The Khronos™ Group Inc. - Page 41

Device Plugin
Runtime

xrCreateInstance()

xrDevicePluginConnectKHR()

MyDevice1 (HMD)

Trackability

Audio Out

Display

…

/devices/MyVendor/MyDevice

xrDevicePluginAddDeviceKHR()

xrDevicePluginSetDeviceStatusKHR()

xrDevicePluginPollEventKHR()

Display Timing Info

Update Pose

Copyright ©2018 The Khronos™ Group Inc. - Page 42

Extensions
Core concepts that are fundamental to the
specification for all use cases
Examples: Instance management, tracking, frame timing

Core Standard

KHR Extensions

EXT Extensions

Vendor Extensions

Functionality that a large class of runtimes will
likely implement
Examples: Platform support , Graphic API Extensions, Device

Plugin, Headless, Tracking Bounds

Functionality that a few runtimes might
implement
Examples: Performance Settings, Thermals, Debug Utils

Functionality that is limited to a specific vendor
Examples: Device specific functionality

Copyright ©2018 The Khronos™ Group Inc. - Page 43

Where Do We Go From Here?

Copyright ©2018 The Khronos™ Group Inc. - Page 44

A Brief History of the Standard
Call for Participation / Exploratory Group Formation

Fall F2F, October 2016: Korea

Statement of Work / Working Group Formation
Winter F2F, January 2017: Vancouver

Specification Work
Spring F2F, April 2017: Amsterdam

Specification Work
Interim F2F, July 2017: Washington

Defining the MVP
Fall F2F, September 2017: Chicago

Resolving Implementation Blockers
Winterim F2F, November 2017: Washington

Raising Implementation Issues
Winter F2F, January 2018: Taipei

First Public Information!
GDC, March 2018: Right Here, Right Now!

Provisional Release

Ratification and Release

Conformance Testing and Implementation

Present Day
Coming Soon

