Catching a Real Ball in Virtual Reality
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ABSTRACT

We present a system enabling users to accurately catch a real
ball while immersed in a virtual reality environment. We exam-
ine three visualizations: rendering a matching virtual ball, the
predicted trajectory of the ball, and a target catching point lying
on the predicted trajectory. In our demonstration system, we
track the projectile motion of a ball as it is being tossed between
users. Using Unscented Kalman Filtering, we generate predic-
tive estimates of the ball’s motion as it approaches the catcher.
The predictive assistance visualizations effectively increases
the user’s senses but can also alter the user’s strategy in catch-
ing.
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1 INTRODUCTION

In this work, we explore haptic sensations in virtual reality
(VR) promoting the idea of users interacting with dynamic
physical objects. To demonstrate this concept, we consider the
catching of a real ball while immersed in virtual reality. From a
psychomotor perspective, catching a thrown ball by hand is not
an easy task but demands many coordinated skills that are
learned from childhood. It takes acute visual sensing, predic-
tion, temporal planning and refined motor control to catch. Per-
forming such a task in VR offers an even greater challenge as
other external factors such as system latency, rendering of
depth cues, frame rate, tracking precision, and registration af-
fect performance. We perceive this problem as a first step to-
wards more complicated dynamic object interactions which
can be used to further immerse users in virtual environments.
We consider three visualizations intended to aid users in
catching real balls while immersed in VR:
e Virtual Ball: a virtual ball is rendered which tracks the real
ball
e Trajectory: the predicted trajectory of the real ball is dis-
played using a line (Figure 1A), and
e Target: a target catchinglocation lying on the predicted tra-
jectory of the real ball is displayed. As under-hand catches
occur at an approximately constant height, we define the
target as the ball location when it drops to this height. The
target object also indicates direction in which the ball will
be arriving to allow users to correctly orient their hands
(Figure 1B).
These visualizations may be applied separately or in combi-
nation with each other.
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Figure 1. Forms of VR catching visualization: (A) Trajectory, where
the predicted trajectory of the real ball is rendered. (B) Target,
where a blue sphere indicates the target position and a white stick
indicates the direction of arrival. In both panes, the virtual ball is
shown.

2 SYSTEM

To provide these visualizations, we use an OptiTrack Flex 13
motion capture system to track the motion of a ball as well as
the catcher’s hands and head at 120 fps and mean lag of 8.33ms.
The system predicts the future trajectory of the ball as it under-
goes projectile motion, and renders a virtual scene to display
the ball’s location as well as any assistive cues. Our virtual
scene is rendered via a head-mounted display (Oculus CV1) us-
ing the Unity 3D game engine on a Windows 10 x64 system (In-
tel Xeon E5-2680 2.5 GHz processor, 32 GB RAM, and NVidia
GeForce GTX 970 graphics). The environment was deliberately
kept minimalistic to maximize frame rate (140-150 fps) and
minimize latency. As such, our scene only contains a textured
floor, a virtual ball, 5 cm x 5 cm square paddles representing
the user’s hands, and Unity default lighting.

3 OBJECT TRACKING AND PREDICTION

We employ a discrete time Unscented Kalman Filter (UKF) to
filter position and velocity data of the ball generated by the mo-
tion capture system [1]. The nonlinear UKF is able to integrate
a quadratic aerodynamic drag

Fp = =D ||5ll7 M
into the ball’s flight dynamics model, where D is a drag constant
and ¥ is the velocity. We define the drag constant as

CA
D=5 2)

where p is the density of air, C is the drag coefficient (approxi-
mated as 0.5 for a sphere) and A is the cross sectional area of
the ball. The full model thus computes the current acceleration

mdlk] = —m g — D||[v[k]|| v[k] 3)

where m is the ball mass and g is the gravitational acceleration
vector. It also updates the velocity

vk + 1] = v[k] + a[k]At 4)
and position
Blk + 1] = plk] + Blk]At + Zd[k]At? (5)
over the time step At. For the UKF we use a process noise of
0.01 and measurement noise of 0.005.
At each time step, we predict the real ball’s entire future tra-

jectory to generate the trajectory and target visualizations, in-
tegrating the dynamic model (3-5) forward in time from the
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Figure 2. Predicted time to target errors vs actual time to target (where the target was the actual location of the ball when it was 10 cm above
the ground) (A) and Distance between the predicted and actual target positions vs. time to target (B). The thick blue lines represents the
mean errors across all trials while the thin red lines represent one standard deviation above and below the mean.

current position and velocity estimates. We terminate this in-
tegration and hence the future trajectory prediction when a tar-
get criterion has been reached, for example, when the ball
drops to a specified height. Using this trajectory, we are thus
able to predict the target position and estimated time that it
will take for the ball to arrive at the target. These predictions
evolve and should naturally refine as time advances.

3.1 Performance

To evaluate prediction accuracy, we tossed a ball using an un-
derarm throw and continually estimated the horizontal target
position and time to target. Without an explicit catch, the target
is defined as the point where the ball drops to a height of 10cm
above the floor. These predictions were recorded for each up-
date and later compared against the actual time and position.
In Figure 2 we show the results of 11 tosses, presenting an av-
erage prediction error and a standard deviation width. The
mean duration of all ball tosses was 1.087s in duration, but we
graph only the final 0.75s before the target time, so that all data
is collected in flight.

Time to target estimates, as seen in Figure 2A, converge fairly
early and by 0.7s to target are within 5-10ms. We believe the
residual 5ms error as well as the final sharp change in error are
mostly an artifact of the 8ms discrete sampling time. In Figure
2B we show the 2D Euclidian distance between the predicted
target position and the position of the ball when it was at 10cm
above the floor as a function of time to target. We see that by
0.7s to target the prediction falls within a 10cm radius of the
target. By 0.35s to target it plateaus below 2cm.

From research in psychomotor behavior [2], we know that
humans need trajectory information at least 200ms before a
catch to be able to react. We thus conclude that the information
gathered by the prediction, if correctly communicated to users,
will allow them to catch.

4 PRELIMINARY RESULTS

We tested the effectiveness of catching using our system over
the course of 140 tosses (20 tosses for each combination of the
three visualizations excluding the condition where no visuali-
zation is presented) in a pilot study. In total 132 balls were
caught, underlining the overall success of the user’s ability to
catch in VR.

20 of these tosses were made with only the virtual ball which
most closely matches how balls are caught in the physical
world. In this condition, 95% of balls were caught, indicating
that our system allows users to catch reliably. Video and screen
capture footage indicate that during the catch, the user visually
focuses on the trajectory of the ball and does not keep their
hands within viewing range until just before the catch. From
this evidence, it can be inferred that prioprioception is used to
position the hands using visual and depth cues of the ball.

Catching with the other visualizations did not seem to affect
catching behaviors, except in the cases where the virtual ball
was not rendered: the removal of the virtual ball from the VR
scene seems to allow the catcher’s hands to reach the catch lo-
cation much earlier prior to catching. The most apparent expla-
nation for this phenomenon lies with the observation that the
user is forced to alter catching strategy: the catcher has to rely
on the target point/trajectory and so the motor task has
changed from a catching task, which had required higher brain
functions to estimate the trajectory, to a simpler, visually-
guided pointing task requiring no estimation at all.

5 DiSCUSSION AND CONCLUSIONS

In this work, we have presented a proof of concept system
which enables users to catch a tossed physical ball while in VR.
It appears that while small latencies exist in our system and ob-
jects such as the user’s hands are rendered abstractly, our sys-
tem allows users to be quite adept at catching balls while in VR.
Thus, combining virtual and physical dynamic interactions to
enrich virtual reality experiences is feasible. Additionally, we
have implemented low-error prediction of the ball’s trajectory
using a non-linear dynamic model. In turn, these predictions in-
form tools to assist a user in catching ball. We have demon-
strated several methods in an attempt to enhance the catching
task within VR with modest success. In one instance, we have
discovered that when a predicted target location is displayed
without rendering the ball, users are forced to switch catching
behaviors: rather than having users to predict the trajectory of
the ball to make the catch, we have reduced cognitive burden
and transformed the task into a simpler pointing task. Thus,
this result shows that this task model for catching appears to
be more efficient from a psychomotor perspective.

We believe this work provides valuable insight which in-
forms how interactions with dynamic objects can be achieved
while users are immersed in VR. As a result of these prelimi-
nary findings, we have discovered many more avenues for fu-
ture work in dynamic object interactions in VR.
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