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Figure 1. This paper presents a novel predictive model for error rates in temporal pointing. In temporal pointing, the task is to select a target, which
appears for selection within a limited time window. This task is common in interactions that require temporal precision, synchrony, or rhythm. Our
model predicts the mean and spread of the response distribution as a function of the distance (amplitude or duration-to-target) and width of this time
window (precision or duration-of-target). Error rates are computed from this distribution.

ABSTRACT
We present a novel model to predict error rates in temporal
pointing. With temporal pointing, a target is about to ap-
pear within a limited time window for selection. Unlike in
spatial pointing, there is no movement to control in the tem-
poral domain; the user can only determine when to launch
the response. Although this task is common in interactions
requiring temporal precision, rhythm, or synchrony, no previ-
ous HCI model predicts error rates as a function of task prop-
erties. Our model assumes that users have an implicit point
of aim but their ability to elicit the input event at that time
is hampered by variability in three processes: 1) an internal
time-keeping process, 2) a response-execution stage, and 3)
input processing in the computer. We derive a mathematical
model with two parameters from these assumptions. High fit
is shown for user performance with two task types, includ-
ing a rapidly paced game. The model can explain previous
findings showing that touchscreens are much worse in tem-
poral pointing than physical input devices. It also has novel
implications for design that extend beyond the conventional
wisdom of minimising latency.
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INTRODUCTION
This paper presents novel data, analysis, and a mathemati-
cal model for user performance in temporal pointing tasks in
human–computer interaction (HCI). In temporal pointing, the
user’s goal is to make a discrete selection of a target about to
appear for a bounded time window. Figure 1 shows an ex-
ample. Imagine trying to shoot a target that is crossing the
screen at some velocity. Your finger resting on a button, you
intend to press it down when the enemy is under the selection
area. If the input event occurs too early, or too late, you miss
the target. Temporal pointing is not limited to gaming; it oc-
curs in applications requiring temporal precision, synchrony,
or rhythm. In this paper, we focus particularly on temporal
pointing that involves practically no spatial pointing.

When we started working on this topic, we were surprised
to learn that temporal pointing is not addressed by predictive
models in HCI. Fitts’ law and its variants [8, 9, 33, 40, 10,
24] are limited to the spatial domain. From Fitts’ law’s per-
spective, our scenario is trivial: as the finger is already on (or
above) the button, travel distance is minimal and movement
time constant (i.e., MT ≈ a). As we argue later, the case is
covered neither by models of reaction time nor by sensorimo-
tor synchronisation studies in psychology.

Our objective was to account for several effects that are of
obvious interest to HCI but that, on the other hand, com-
plicate the modelling task. Firstly, to be relevant to design,
the model should address the properties of the temporal tar-
get window, including its distance (amplitude or duration-to-
target) and width (precision or duration-of-target) in time. It
is easier to shoot when the enemy is moving slowly or the
set of crosshairs is large. We use temporal distance D and
temporal width W to refer to these properties in this paper.
Secondly, visual cues affect how predictable the target is. In
the worst case, no cue is available other than that the target
has appeared in the past. In a better case, the target can be
perceived moving on a display. Thirdly, the input device ob-



viously has an effect on performance, but it is not known how.
Indeed, a few studies in HCI looking at temporal performance
in games have found large differences among input devices.
In particular, they have found that gaming performance can
be up to 150% worse in playing with a touchscreen device
rather than a physical controller [5, 42, 43]. We argue later in
this paper that these differences are not trivially attributable
to latencies or tactile feedback. Fourthly, users can also adopt
different response strategies. In the scenario above, would
you try to anticipate and start pressing down slightly before
the enemy reaches the crosshairs, or would you rather wait
until it is there and press down then?

This paper contributes by 1) defining temporal pointing in
terms of the concept of temporal target and 2) deriving a novel
mathematical model to predict error rates. The model as-
sumes that users have an implicit temporal point of aim within
the target window, the point in time at which they intend the
input event to be registered. However, the model further as-
sumes that their ability to elicit the input event at that time is
hampered by variability accumulating over three processes:
1) an internal time-keeping process, 2) a response-execution
stage, and 3) input processing in the computer. Two empir-
ical parameters capture the changes in the point of aim and
variability. The model yields a task-specific response distri-
bution, a Gaussian in time, from which error rate E can be
calculated. The mathematical description captures a transi-
tion between two response strategies found in previous stud-
ies: anticipation and reaction [7, 31]. Users tend to rely more
on anticipation (their internal clock) than on reaction when
the task becomes more difficult. Although simple, the model
adequately addresses two quite different cases:

• Approaching target: The target is visually moving toward
a selection region, as in the shooter game.
• Blinking target: The target is not moving but is appearing

with some predictable interval, such as that in playing a
musical instrument.

Our work offers some insights into design that we believe are
novel. The concept of temporal target is easy to understand
and can be analysed, even for dynamic tasks. When it is com-
bined with the model, one can predict how changes in the in-
teractive task affect user performance. For example, one can
use it in designing game levels for the degree of difficulty.
We also discuss design factors in input methods affecting the
implicit target point and variability in responses. These go
beyond the standard wisdom that minimising latency is im-
portant.

In the rest of the paper, we firstly argue that the task is not
covered by previous models used in HCI. We then explain the
theory and mathematics behind the model. Finally, we report
results from two studies: one with a blinking target and the
other with a dynamically changing visual target.

PRIOR ART IN SPATIAL AND TEMPORAL POINTING
Figure 2 delineates existing models by way of two dimen-
sions: 1) temporal and 2) spatial task requirements. Temporal
pointing, as defined here, can be thought of as the temporal
counterpart of the familiar Fitts’ task. As does the Fitts’ task,

Figure 2. The task studied in this paper is defined as the temporal coun-
terpart to Fitts’ law: The task is to hit a target appearing after some du-
ration (distance) for a limited time (width). However, movement in space
is minimal, as the finger is resting on/above a button. Fitts’ law predicts
movement time with constant error rate in space (4%). By contrast, our
model predicts error rates in time with constant task completion time
(duration-to-target). Previous models do not address this task.

it assumes limited precision (width W ) and amplitude (dis-
tance D) in temporal selection. Unlike in spatial pointing,
however, there is virtually no movement in space. The user
can only determine when to launch the response. The figure
also shows that models of response times in psychology do
not cover the case with D and W .We now expand on this
argument.

Note: In the following discussion, to indicate when a vari-
able refers to the spatial domain, we use a subscript s. For
variables in the temporal domain, we use a subscript t.

Spatial Pointing
Although the familiar models of spatial pointing in HCI look
at temporal aspects of performance, such as movement time,
they do not predict user performance in the task of hitting a
temporally constrained target.

Fitts’ law [8] predicts minimum movement time MT with
two spatial requirements: movement distance Ds and tar-
get width Ws. In other words, the user is asked to move
as quickly as possible to hit the target. Fitts introduced
the concept of index of difficulty: MT = a + bIDs =
a+b log2(2Ds/Ws). Wobbrock et al. [40] analysed Fitts’ law
to derive a model of error rates with three task requirements
mixed in the temporal and spatial domain: target size Ds,
target width Ws, and temporal target distance Dt. As this pa-
per does, they predicted error rates, because there was an ex-
plicit requirement to maintain a temporal distance to the tar-
get Dt. Besides, when the spatial requirement Ws is relaxed
from Fitts’ task, targeting becomes more open-loop-like. Gan
and Hoffman [9] proposed a model to predict MT when the
goal is to hit a large target at distance Ds. Hoffman’s law
originally predicted MT = a + b

√
Ds. With additional as-

sumptions, it can be expressed as the constant ratio between
Ds and the standard deviation (SD) of end points[12].

Schmidt’s law [33] adds one temporal requirement to Gan and
Hoffman’s model, time to target Dt. This changes the task
from time-minimisation to spread-minimisation at a known



distance in time. The law predicts that SD (in the spatial
domain) is linearly related to movement velocity. If time to
the target Dt is controlled, SD increases linearly with spatial
distance Ds. In this case, the model is the same as that of
Hoffman et al. [9, 12]. Guiard et al. [10] recently presented
the most comprehensive model of spatial aiming. The WHo
model explains different aspects of spatial movement by ref-
erence to six axioms of human movement. That model sub-
sumes Fitts’ law and Schmidt’s law by reference to a trade-off
phenomenon among the axioms. The model is not depicted
in Figure 2 since our analysis is based only on task instruc-
tions rather than actual user response. In addition, models
inspired by control theory [6, 15, 20, 19, 25] have looked at
speed–accuracy trade-offs in spatial pointing tasks.

Reaction
The Ratcliff model [26, 37, 30] addresses simple reaction:
a response to the onset of an abrupt stimulus or event.
Reaction-time distributions are often Gaussian or skewed
Gaussians. The model assumes that reaction time RT has
two sources of variation: decision time Td and non-decision
time Ter, which is further broken down into the two sub-
components x and y: RT = Td + Ter = x + Td + y. The
non-decision term has two components. The first is the per-
ceptual encoding of the stimulus that lasts for some duration
denoted with x. After perception of the stimulus, a stochastic
decision process starts. During this period, evidence is ac-
cumulated (diffused) in the brain that the stimulus should be
responded to. After sufficient evidence for passing threshold
a, the decision process stops and the motor response process
begins, with duration y. The duration of the decision process
Td is user- and task-dependent and varies across trials. The
drift rate (or the accumulation of evidence) is assumed to be
normally distributed with mean v and SD η. The two non-
decision components x and y are summed to Ter and treated
together in the model because they are difficult to disentangle
in real data.

Choice reaction refers to the task of choosing from among N
alternatives one that matches a given target. In a similarity to
spatial pointing, a speed–accuracy trade-off has been noted
and explained by reference to limited information capacity
[30]. Faster reaction results in a higher error rate. A user can
decrease errors by thinking more. When this speed–accuracy
trade-off function is assumed to be linear, we get the well-
known Hick–Hyman law [14].

Synchronisation
The Wing and Kristofferson (WK) model [39, 38] predicts
performance in the synchronisation task, in which one has to
synchronise, for example, tapping or clapping with some re-
peating stimulus, such as a beep sound. The beep is regarded
as an impulse signal, and the user has no explicit requirement
of temporal preciseness Wt. In other words, only Dt (inter-
onset interval, IOI) is controlled. The model divides the cog-
nitive process in synchronisation tasks into two parts: an in-
ternal time-keeping process is followed by a motor response
with time delay. Both time-keeping precision and motor de-
lay are assumed to be stochastic and separately represented
by additive random noise with a mean and variance. Noise

components can be extracted from a tapping experiment by
examining autocorrelation in consecutive asynchronies [39].
The variance of the time-keeping process linearly increases
with IOI [27, 29], There is a similarity here to the model of
ballistic movements in the spatial domain, in which the SD of
end location linearly increases with target amplitude Ds. We
will use this linearity as a primary assumption in our model.
By contrast, variance in motor responses remained relatively
constant and lower than time-keeping variance. This implies
that variance in motor responses dominates in fast tapping
(IOI sub-250 ms).

As with reaction times, the distribution of asynchronies is
approximated well with a Gaussian [18, 21]. Research has
shown that stimulus modality and differences between indi-
viduals affect performance. Auditory stimuli (such as beep
sounds) are better for synchronisation, especially with higher
tempos (100–125 ms IOI limit), than visual stimuli [28].
Furthermore, large individual-to-individual differences have
been observed, for example, between musicians and non-
musicians [28, 27].

While the WK model explains two important variances, it
does not explain the offset between stimulus and tapping,
which also changes with IOI [27, 29]. A Bayesian model of
human timing [2, 41, 1] provides an explanation to the vary-
ing aim point in synchronisation. It explains this as statistical
self-correction occurring between taps when a person is try-
ing to maximise performance for a given loss function.

Interception
Intercepting a moving target demands considering both spa-
tial and temporal amplitude to the target, but, depending
on the target’s speed and size, precision might also be re-
quired [4]. To our knowledge, there is no model of tar-
get interception that would consider the case of temporal
pointing wherein the spatial task requirement is negligi-
ble. Anticipation-coincidence studies [17, 3] and the Newell
group’s work [22, 11, 23, 16, 13] have offered a mixed view,
wherein temporal and spatial requirements co-exist. Two dis-
tinct categories of existing models can be recognised: 1) mod-
els assuming preprogrammed responses and 2) on-line con-
trol models. There has been some criticism of these models
[35]. One critical issue is that several strategies are possi-
ble. For example, when one is capturing a target, four dis-
tinct strategies have been identified (pursuit, head-on, reced-
ing, and perpendicular) [35]. The strategy is affected by how
the target moves, its identity, whether it is to be captured
or hit, and how it is approached. One replicated finding is
that when moving targets require more temporal precision
(smaller Wt), people increase the movement velocity [36, 4,
34]. However, faster movement also decreases spatial pre-
cision, as Schmidt’s law predicts. This has been explained
by reference to a process that maintains optimal strategy be-
tween spatial and temporal precision [32, 41]. In summary,
although interception is a generalisation of both spatial and
temporal pointing, at present no model is able to predict per-
formance in our case – i.e., when spatial task requirements
are virtually non-existent.



Summary
Our model builds on several insights from prior work. Firstly,
we assume – and later show – that response distributions in
time are Gaussian. Secondly, we assume 1) a time-keeping
process and 2) a response process. Both processes are unre-
liable, and variability is modulated by task and experience.
Unlike previous work, we assume an implicit point of aim for
a given temporal selection window, which can be understood
as an optimal strategy of the user, chosen in terms of temporal
speed–accuracy trade-off.

OVERVIEW AND DERIVATION OF THE MODEL
Our model predicts the distribution of users’ responses in
time, from which we compute error rate E [0, 1]. It is com-
puted by subtracting areas occurring inside the target from the
total area in the distribution (see Figure 1). The model takes
two inputs defining the temporal target: width (or the dura-
tion in time for which it remains selectable) Wt and distance
Dt, or time until target onset. The response distribution is
represented as a Gaussian with a mean of cµ ×Wt and stan-
dard deviation of cσ ×Dt. Two empirical parameters, cµ and
cσ , determine the mean and spread of the distribution. They
have the following explanations:

1. cµ is the implicit temporal aim point of the user.
2. cσ captures aggregated noise and uncertainty across the

three stages to pointing.

We now discuss theoretical assumptions of the model. We
then derive the model and, finally, discuss its use.

Theoretical Assumptions
The model assumes three stages preceding the final input
event in the application. Figure 3 gives an overview.

1. Internal clock: As in the WK model [39, 38], we as-
sume that users rely on an internal clock to decide when to
launch the response. The time-keeping is similar to a ballis-
tic motor movement: it is based on an internal estimate and
uncorrectable once executed. The estimate is affected by the
temporal target – the larger Dt, the worse the estimate (if
you ask someone to count out 10 seconds with eyes closed,
the error will be much larger than in counting out, say, three
seconds). Moreover, the estimate is noisy. If the target is per-
ceived only intermittently, or its velocity is hard to estimate,
the estimate is worse.

2. Response execution: The response stage starts with
launching the movement of the finger. Models of spatial tar-
geting, such as Fitts’ law, explain performance here only if the
movement trajectory involved is large. In our case, the trajec-
tory involved is minimal and the target (button) very large.
Variability in this stage is caused by several sources, includ-
ing users’ estimate of when the input is registered, variability
in finger travel distance (e.g., if the finger hovers over a virtual
button), and variability in muscle activation during motion.

3. Input processing: Sensor data are registered and pro-
cessed further to determine the input event. The duration of
this stage depends on the input device and input method. For

Figure 3. The three stages preceding the final input event: 1) internal
clock, 2) response execution, and 3) input processing in the computer.

example, a touch event on a touchpad can be registered as in-
put at Touch-Down or at Touch-Release. For simplicity, we
do not manipulate input-processing duration in our study.

Shift in response strategy: We also assume (and show) that
response strategy changes with temporal target. When Wt is
large, users do not need to anticipate the target; they simply
respond when it appears (reactive strategy). If Wt is small,
they must anticipate (anticipatory strategy). The model cap-
tures this shift as we show below.

Mathematical Derivation
The response distribution R as a function of time t centred at
µ from target onset is assumed to be Gaussian:

R(t|µ, σ) = 1

σ
√
2π
e

−t2

2σ2 , where (1)

σ = cσ ×Dt and µ = cµ ×Wt (2)

The linear relationship between σ and Dt was inherited from
sensorimotor synchronisation studies. More intuitively, cσ
describes the ballistic time estimation of the internal clock
as similar to that of spatial ballistic movements [12, 9]. The
mean µ of the distribution represents the implicit aim point
of the user for a given temporal target. It assumes that users
will consistently aim at a fixed ratio cµ for the temporal width
Wt of the target. Parameter cµ is a positive constant, and the
largest permissible value is 1.0.

Plugging σ in Equation 2 into Equation 1, we obtain a func-
tion for response distribution:

R(t|Wt, Dt) =
1

cσDt

√
2π
e

−t2

2(cσ×Dt)2 (3)

We can now calculate error rate E(∈ [0, 1]) by subtracting
the hit area from the total area in the distribution:

E(Dt,Wt) = 1−
∫ Wt−µ

0

R(t)dt−
∫ µ

0

R(t)dt

= 1− 1

2

[
erf(

Wt − µ
σ
√
2

) + erf(
µ

σ
√
2
)

]
= 1− 1

2

[
erf(

(1− cµ)
cσ
√
2
· Wt

Dt
) + erf(

cµ

cσ
√
2
· Wt

Dt
)

]
(4)

where erf(x) is the (known) error function encountered in
integrating the normal distribution:

erf(x) =
2√
π

∫ x

0

e−t
2

dt (5)

Figure 4 illustrates this. Note: Error function erf(x) should
not be confused with error rate function E given above.



Figure 4. Error rate is computed by integrating a Gaussian within the
range defined by failed trials.

The Final Model
The model predicts errors as a function of how difficult the
target is. The further away it is (the larger the Dt value) or
the smaller the target width (Wt), the harder the task. Task
difficulty is measured by IDt (unit: bits), in a similar way to
that of Fitts’ law (see Figure 5):

IDt = log2(Dt/Wt) (6)

We compute E from Equation 4 by using index of difficulty
IDt. The model collapses to a single dimensionless quantity:

E(IDt) = 1− 1

2

[
erf(

(1− cµ)
cσ2(IDt+0.5)

) + erf(
cµ

cσ2(IDt+0.5)
)

]
(7)

Effects of Varying Noise and Anticipation on Error Rate
By varying cµ and cσ , we can observe their effects on error
rate. In Figure 6, we vary one of these parameters at a time
while fixing the other parameter. The x-axis represents index
of difficulty (IDt) as defined above. Note that IDt=0 can re-
sult in a non-zero error rate, because the process is stochastic
in consequence of the ballistic property of the internal clock.
If the variability in aiming is much greater thanWt, there will
always be some amount of undershooting or overshooting.

We make the following observations:

1. After around 3 ≤ IDt ≤ 4, the error rate converges to one
increasing trend. While the detail range will change with
the cσ we use for the plot, it could basically represent a
cross-over point where the anticipative strategy is not ef-
fective anymore.

2. Ideally, the best aim point is at the centre of the temporal
target window cµ =0.5.

3. Increasing cσ shows virtually no effect after cσ =5.

Limitations
The model subscribes to the assumption that the relationship
between µ and Wt is linear. This is practical, because the
error rate can be expressed as a function of Dt/Wt, or in-
dex of difficulty. However, this linearity would not hold for

Figure 5. Temporal target and task difficulty: The further away the
target is (the larger its Dt) or the smaller its width (Wt), the harder
the pointing task. Difficulty is measured by index of difficulty IDt (unit:
bits). We show two hard tasks (2 bits) and an easy task (1 bit).

Figure 6. Effect of model parameters cσ and cµ on error rate with vary-
ing index of difficulty, where (a) cµ was fixed at 0.16 and (b) cσ was fixed
at 0.065.

Wt greater than human reaction time (∼300 ms). If so, a
user could choose to be purely reactive rather than apply an-
ticipation. However, the reaction task is not covered in our
model. There are similar limitations with overly short Dt due
to the rate limits in internal clocks [28] as discussed in the
‘Synchronisation’ section. Also, the scope with the model is
limited to tasks that involve very little spatial movement. If
the user must aim at a button, for example, another stage is
introduced. This is not covered in the model.

Obtaining Parameters Empirically
In a similar way to Fitts’ law models, the two parameters can
be determined in a simple empirical study whereinWt andDt

are varied. We generally recommend limiting IDt to between
1 and 6. In the experiments described below, we used IDs of
9 and 12 to test the model, and it was found to be sufficient.
For a visually cued task, we recommend Dt ≥ 700 ms. In
an auditorily cued task, Dt can be less, even as brief as 250
ms [28]. Width Wt should be between 0 ms and 200 ms.
If temporal targets are repeating, Wt should be shorter than
Dt, to avoid overlap between targets. In a blinking study, it
is straightforward to set Dt and Wt. In contrast, in studies
using visually approaching targets, spatial regions must be
converted into temporal ones. This is done by considering
the associated velocities and sizes of regions. An example is
provided with Experiment 2 (Flappy Bird).

EXP. 1: BLINKING TASK WITH FIVE INPUT METHODS
Experiment 1 involved the blinking task, the simplest form
of temporal pointing. Users had solely the internal clock to
rely on. In our task, a filled circle is blinking with a fixed
onset interval, as shown in Figure 7. The circle is visible for
Wt. Participants must ‘eliminate’ it by producing an input
event just when the target is visible. Target distance Dt is the
inverse of blinking frequency: 1/f .



Figure 7. Experiment 1 uses a blinking task. The user must create an in-
put event by pressing a button during the duration of a circle’s visibility.

We also compare five input methods. The hypothesis is that
they differ in implicit aim point cµ and in variability cσ . We
selected the methods such that the results have a bearing in re-
lation to the previously reported difference between physical
and touchscreen buttons in gaming performance:

• Touch-Down: Evoked when the finger is first registered as
contacting the sensor surface.
• Touch-Maximum1: Evoked when the contact area of the

finger is maximised.
• Touch-Release: Evoked when the finger has lifted off from

the sensor surface.
• Key-Press: Evoked when the tactile switch first contacts

the electrode.
• Key-Release: Evoked when the electrodes first become

separated (when contact between them is lost).

Method
Participants: Twenty participants (8 males, 11 females, 1
other) were recruited from a local university. The mean age
was 28 (SD=8.3). Five wore eyeglasses. Ten had experience
with touchscreen games or musical instruments. We did not
control the number of musicians in the sample; six of our par-
ticipants reported having a background as a musician.

Experimental design: The experiment followed a within-
subject design with three independent variables: target width
Wt, target distance Dt, and input method. The levels were
the following:

• Wt: 50, 116.7, and 200 ms
• Dt: 600, 900, and 1200 ms
• IDt: 1.56, 2.17, 2.36, 2.59, 2.95, 3.37, 3.59, 4.17, and 4.59

bits
• Input methods: Touch-Down, Touch-Maximum, Touch-

Release, Key-Press, and Key-Release

Participants completed 100 selections per IDt level. The or-
der of IDt was randomised within an input method. The or-
der of input methods was also randomised.

Task: The participants were instructed to select a blinking cir-
cle without skipping any of them. This is to keep target dis-

1According to the law of conservation of energy, this indicates the
timing of maximum kinetic energy transferred to the touch surface.

tance within the range permissible in the model. They were
told to select the target as quickly and as accurately as possi-
ble from its onset. They were informed that quicker selection
may require anticipating when the target appears since the
target duration would be shorter than typical human reaction
time.

Materials: The target was a white-filled circle presented on a
black background (diameter: 23 mm). After its appearance,
the opacity of the circle was linearly decreased. It disap-
peared completely at Wt. When selection was successful, the
target disappeared immediately. Upon a miss, no feedback
was given.

Procedure: Participants sat on a regular office chair and used
a laptop placed on a desk. After adjustment of the chair, a pre-
study questionnaire was administered, asking about previous
experience in gaming and music. Next, the subjects were in-
troduced to the task and given several examples of successful
and failed selections. Training included making 10 selections
per IDt condition. In the experiment, a short break was pro-
vided after each IDt condition. An experiment took about
one hour to finish.

Apparatus: The software was implemented as a Java applica-
tion running on a laptop (MacBook Pro late-2012, 2.2 GHz
Intel Core i7 with Intel Iris Pro 1536 MB graphics card). Its
touchpad and keyboard were used as the input devices. The
size of the display was 35.8 cm× 24.7 cm. In the touch input
conditions, participants used the touchpad with the preferred
finger (index or middle). For the two physical-key conditions,
they used the ENTER key. The refresh rate of the application
was 60 fps.

Results
Before the modelling results, we show that the response dis-
tribution is Gaussian. For statistical testing, we use repeated-
measure ANOVA with an alpha level of 0.05. Greenhouse–
Geisser correction was used for the violation of sphericity.

Normality Test for the Response Distribution
The assumption about normality holds for the large majority
of the data. A normalised histogram of 81,000 hits and a CDF
plot of both normal and empirical data are shown in Figure 8.
For testing normality, we applied one-sample Kolmogorov–
Smirnov for each block of a hundred repeats of IDt+method
conditions. An alpha of 0.05 was used.

In the 810 distributions obtained (one per condition per user),
79.88% were statistically a normal distribution. Only two
users had a large quantity of non-normal trials (33% and
44%). We excluded these two from the analysis. The rest
had fewer non-normal trials (M=6.78% SD=7.75%).

Figure 8. Response distributions in Experiment 1 (blinking task). On
the right, a CDF comparison between the normal and empirical spread
of hits. On the left, a histogram of normalised hits.



Testing Assumptions about Dt and Wt

Although the number used for both Dt and Wt in the experi-
ment was limited to 3, the assumptions put forward in Equa-
tion 2 are supported by the data. Firstly, the effect of Wt

on the centre of the response distribution (µ) was significant:
F(1.23,20.98) = 31.84, p<0.001. A linear polynomial con-
trast statistic further supports the model’s assumption that this
relationship is linear: F(1,17) = 35.33, p<0.001, R2 =0.99.
The slope is presented in Figure 9. From the slope, we can
estimate cµ to be 0.26 for the trials overall. In other words,
users were targeting the midpoint between the onset and the
target centre.

Secondly, as expected, target distance Dt had a signifi-
cant effect on the spread of the response distribution (σ):
F(1.31,22.30)=14.28, p<0.001. The fit, at R2 =0.91, was
lower than for Wt. Pairwise comparisons showed a signif-
icant difference between 900 ms and 1200 ms (p<0.001).
However, the difference was not significant between 600
ms and 900 ms (p=0.18). Consequently, error rate was af-
fected by Dt, too: F(1.43,24.30)=10.27, p=0.002. The con-
dition Dt =600 ms showed a higher error rate (M=0.59,
SD=0.24) than the 900 ms (M=0.51, SD=0.24) and 1200 ms
(M=0.57, SD=0.23) ones. Pairwise comparison showed a sig-
nificant difference in error rates between 600 ms and 900 ms
(p=0.001) and between 900 ms and 1200 ms (p<0.001).

Effect of Input Method
As predicted, input method showed a significant effect on
error rate: F(2.38,40.51) = 5.74, p=0.004. Pairwise com-
parisons show that Touch-Down (M = 57.4%, SD = 2.9%)
had a 4.5% higher error rate (p=0.005) than Key-Press (M
= 52.9%, SD = 3.1%). Error rates for Touch-Maximum (M
= 55.6%, SD = 3.1%) were 4.3% lower (p=0.01) than those
for Touch-Release (M = 59.9%, SD = 3.2%), and 4.8% lower
than Key-Release’s (M = 60.4%, SD = 3.1%) with a border-
line effect (p=0.053). The Key-Press method showed a 7%
and 7.5% lower error rate than Touch-Release (p<0.001) and
Key-Release (p=0.003), respectively.

Input method had a significant effect on distribution centre
(µ): F(2.43,41.38) = 10.39, p<0.001. As expected, Touch-
Down showed an earlier response (M=12.4 ms, SD=38.93
ms) than the others (p<0.001). Touch-Maximum (M=27.7
ms, SD=42.94 ms) and Key-Press (M=23.7 ms, SD=37.23
ms) were similar in this respect. Touch-Release (M=36 ms,
SD=47.63 ms) and Key-Release (M=43.5 ms, SD=45.53 ms)

Figure 9. Target widthWt versus µ (right) and target distanceDt versus
σ (left) in Experiment 1. As the model predicts, a linear trend fits the
data.

Figure 10. Predicted and observed error rates for the five input methods
in Experiment 1 (excluding Dt=600 ms).

showed the latest response, about 10 to 20 ms later than the
others (p<0.012).

We also analysed the interaction effect between input method
and IDt (see Figure 10) on error rate. Pairwise com-
parison showed that for lower IDs (2.17, 2.59, and 3.37
bits), the fast input methods generated more errors. Touch-
Down showed a 4.9–10.3% higher error rate (M=6.81%) than
Touch-Maximum (p<0.039) or Key-Press (p<0.02). How-
ever, for higher IDs (2.95, 3.37, 4.17, and 4.59 bits), slow
inputs had a higher error rate than faster inputs. Touch-
Release and Key-Release showed a 4.4–9.2% higher error
rate (M=5.95%) than Touch-Maximum (p=0.046), Touch-
Down (p<0.022), or Key-Press (p<0.045).

Model Fitting
Practically we do not need to measure σ and µ to obtain
cσ and cµ. Instead, the final model in Equation 7 requires
only IDs (known) and corresponding error rates (empirical)
for finding the parameters. For this part, the model was
fitted against average error rates in all nine ID conditions.
When fitting all data, including Dt =600 ms, we obtained
R2 =0.744. For this model, cσ is 0.0852 (p=0.001) and cµ is
0.0634 (p=0.27).

However, without that condition (Dt =600 ms), model fit was
much higher, atR2 =0.997. The input methods were covered
well by the model, with Touch-Maximum, Key-Press, Touch-
Down, Touch-Release, and Key-Release at R2 =0.998,
0.984, 0.974, 0.977, and 0.977, respectively. The estimates
obtained for cµ and cσ are given in Table 1.

Input method cµ cσ R2

Touch-Down 0.131 0.0805 0.974
Touch-Maximum 0.183 0.0773 0.998

Touch-Release 0.161 0.0833 0.977
Key-Press 0.168 0.0705 0.984

Key-Release 0.204 0.0864 0.977
Overall 0.169 0.0795 0.997

Including 600 ms 0.0634 0.0852 0.744
Table 1. Model parameters and fitness scores by input method in Ex-
periment 1. Key-Press showed the least input noise of all the methods.
Touch-Maximum was the best among the touch-based inputs.



Figure 11. Error rate increases rapidly with the fastest tapping condition
(Dt=600 ms, left). An input device with slower sensor events suffered
more from the problem at Dt=600 ms (right).

Shortest Target Distance
We examined more closely why the model fit is much higher
when the shortest distance condition (600 ms) is excluded. It
reveals a lower limit to the range ofDt conditions explainable
by our model.

Plotting error rate versus IDt shows an anomaly in our data
at Dt =600 ms (left, Figure 11). The spread of responses
increases rapidly. In fact, this effect was predicted by the
WK model [38] and by rate-limit studies of sensorimotor syn-
chronisation [28]. These have shown that the decrease in the
spread of responses stops below 600 ms for a visually pre-
sented stimulus. Two factors explain this: 1) noise from the
response-execution stage becomes greater with faster tapping
and 2) there is lack of preparation time for the internal clock.

The hypothesis gains more support when one compares the
input methods. An input device with slower sensor events
should suffer more from the problem at Dt =600 ms, be-
cause it will have more latency. Indeed, we found that the
interaction effect between IDt and input method was signif-
icant: F(9.15,155.51)=2.24, p=0.022 (right, Figure 11). If
we consider only the three IDts that include the 600 ms tar-
get distance, pairwise comparisons show consistently higher
error rates for the input methods with the latest response
(Touch-Release and Key-Release). Touch-Release and Key-
Release showed a 6.4–16.7% higher error rate (M=11.87%)
than Touch-Down (p<0.038), Touch-Maximum (p<0.039),
or Key-Press (p<0.004).

Musicians’ Greater Precision
We can also report that participants with musical expe-
rience benefited more from the Touch-Maximum method
in relative terms. For musicians, cσ for this method
was 0.0578 (p<0.001) and cσ for Key-Press was 0.0556
(p<0.001). This indicates near-perfect aiming in this
condition. Musicians also showed lower noise for
Touch-Release (cσ=0.0655, p<0.001) than Touch-Down
(cσ=0.0703, p=0.0015). By contrast, non-musicians showed
higher noise for Touch-Maximum (cσ=0.0921, p<0.001)
than Key-Press (cσ=0.0803, p<0.001).

Summary
In summary, the basic assumptions are supported by the
data, on the assumption when we concentrate on the range
Dt >600 ms. In that range, our model predicts error rates
in temporal pointing up to 0.997 of R2. The model also cap-
tures differences between popular input methods and provides

a novel explanation for them. It explains the differences in
terms of implicit aim point and variability. We return to this
finding in the ‘Discussion’ section.

EXP. 2: VISUALLY CUED TEMPORAL POINTING
The second study looked at a more realistic, dynamically
changing task. Our case is a popular mobile game called
Flappy Bird, illustrated in Figure 12. At the late January
2014, the game suddenly became the most downloaded game
in the iOS store. The gamer’s goal is to pass as many ‘pillars’
as possible by flying between them. The game involves no
other controls than tapping the display, but it has been criti-
cised for its extreme difficulty. Comparing this to the blink-
ing experiment, we expect a lower value of cσ (that is, less
spread), because visual cues reduce uncertainty in the inter-
nal clock.

First, we analyse game performance in terms of temporal
pointing, dividing the game into two, different temporal tasks.

The Flying Dynamics of the Bird
To determine the temporal targets, we firstly need to under-
stand how the bird moves. Each tap makes the bird ‘jump’
in accordance with a pre-defined trajectory. The shape of the
trajectory is governed by three motion parameters: horizon-
tal velocity of the bird vx (pixels/frame), downward gravity
gy (pixels2/frame), and the initial vertical velocity of the bird
vy0 after a jump. In jumping, the vertical velocity of the bird
is updated by vy0 in the upward direction. With Newtonian
kinematics, the position of the bird (xb, yb) after a jump can
be expressed as a function of time t:

xb = x0 + vx × t
yb = y0 − gy/2t(t−Dt) where Dt = 2vy0/gy

(8)

Note that t represents a timeframe in the game. x0 and y0
represent the global location of the bird at jump initiation.
AfterDt timeframes have passed, the bird will return to initial
height y0 because of the gravity.

Analysing Temporal Targets in Flappy Bird
We now analyse the timing of jumps in the pillar landscape as
a temporal pointing task. We convert the spatial relationship
between the bird and a pillar to a temporal target.

Firstly, we analyse temporal width Wt. When there is no
pillar near the bird, a target can be assumed to allow very
low temporal precision. We exclude these very easy jumps as
irrelevant.

Figure 12. The Flappy Bird game (left) and our experimental replication
of it (right). The game requires manoeuvring a bird with jumps through
a pillar landscape.



Figure 13 shows two distinct regions, A and B. The regions
are defined by boundaries 1 and 2, marked in the figure. As
region A allows wider space for the bird to fly without colli-
sion, the temporal target has a larger Wt. We can relate both
boundaries to the bird’s motion as is shown below:

Boundary 1: y = h− gD2
t /8

Boundary 2: y =

{
−g/2v2x(x− vxDt/2)

2 : x ∈ [0, vxDt/2]
0 : x > vxDt/2

(9)
Note that h represents the height of the tunnel minus the bird’s
diameter. Now by substituting yb in Equation 8 into y of
Equation 9, we can calculate the time T1 and T2 when the bird
crosses each boundary 1, 2 after a jump. Time gap (T2 − T1)
was averaged over (x0, y0) to obtain averagedWt for a region
as shown below:

Wt =
1

nm

n∑
x0

m∑
y0

(T2 − T1) (10)

Next, Dt can be determined by means of Equation 8. We
assume that a player tries to maintain a flying altitude by re-
peatedly executing jumps. The distance between those jumps
then becomes the target distance (Dt in Equation 8).

Method
Participants
We recruited 10 participants (5 males, 5 females) from a lo-
cal university. Mean age was 29 (SD=8.5). Seven reported
familiarity with touch-gaming or music.

Task and Materials
We implemented a Java version of Flappy Bird, emulating the
original game. In our application, the bird is represented with
an orange circle. The objective is to cross as many pillars as
possible. If the bird hits a pillar, the game restarts from the be-
ginning with a score of 0. Collision with a pillar is determined
from the edge of the circle, as in the original game. The num-
ber of pillars crossed is shown on the screen, together with a
high score. The frame rate of the game was maintained at 60
fps, and all target distances and target widths are converted to
the time measure at this rate.

Experimental Design
Two temporal target distances and three temporal target
widths were used to create levels in the experiment. Target
distance Dt was determined from Equation 8, with two sep-
arate gravities used, 0.22 and 0.11 pixels2/frame, while vy0
was fixed at 5 pixels/frame. We chose to change the gravity
to maintain a consistent feeling of control for the bird when
the user was initiating a jump. The resulting target distances
are 757.6 and 1515.2 ms. Order of levels was randomised.

Target width Wt was determined from Equation 10. We fixed
the diameter of the bird as 20 pixels (4.6 mm) and changed
the distance between pillars to control Wt. The heights of the
pillar openings were 132, 94, and 84 pixels for 0.22 gravity
and 190, 150, and 140 pixels for 0.11 gravity. The resulting
Wts for region A were 206.9 ms, 83.7 ms, and 54.7 ms for the
0.22 gravity condition and 238.9 ms, 119.8 ms, and 91.2 ms
for 0.11 gravity. The resulting widths for region B were 189.4

Figure 13. Analysis of temporal targets in the game in Experiment 2.
Regions A and B are safe. When a jump is made before region A or B,
the bird will collide with the upper pillar, undershooting the temporal
target. When a jump is made after the A or B region, the bird will collide
with the lower pillar, overshooting the temporal target. Combining this
with an analysis of the jumping trajectory, we can calculate temporal
targets.

ms, 54.6 ms, and 21.2 ms for the 0.22 gravity condition and
189.4 ms, 54.6 ms, and 21.2 ms for 0.11 gravity. Horizontal
speed of the bird vx was maintained at 3 pixels/frame, and the
width of the tunnel was fixed at Dt × vx to ensure that both
region A and region B could be encountered uniformly. The
exact values are given also in the appendix.

Procedure
The participants were asked to play the game to the best of
their ability. They were encouraged to beat the other partic-
ipants’ high score. The beginning location of the bird was
randomly perturbed within a pillar width. The distance be-
tween pillars was fixed at three times the tunnel width. The
vertical locations of tunnels were perturbed for every game
within 400 pixels from the centre of the display. Playing time
was fixed at six minutes for the higher gravity and 12 minutes
for the lower gravity level. Total play time was one hour.

Participants used the ENTER key to jump, using the same
keyboard as in Experiment 1. We recorded the score of the
participants and the location of the bird for all jumps. Colli-
sions were also recorded, with collisions with the upper pillar
distinguished from those with the lower pillar. We can obtain
the error rate for each region as is shown below:

EA =
Deaths in region A
Trials in region A

EB =
Deaths in region B
Trials in region B

Model Fitting
The two parameters cµ and cσ were used for both regions, A
and B. This assumes that only the temporal target changes in
those regions, not the implicit aim point or variability.

The overall fit was high: R2 =0.87; see Figure 14. As
expected, cσ was low, at 0.00802 (p=0.012). This is only
11.38% of that observed in the blinking study. Theoretically,
it indicates lower noise in the internal clock arising from vi-
sual motion cues (see Figure 15). cµ was estimated to be
0.0741 (p=0.0182). This is 44.2% of the value in Experiment
1. In other words, players tried to jump the bird closer to
boundary 1, rather than boundary 2. Boundary 1 is not visi-
ble as boundary 2 is. Perhaps users tried to avoid the lower
pillar.



Figure 14. Experiment 2 modelling results: The model shows high cor-
relation (R2 =0.87) with empirical data from game regions A and B.

Cross-Validation
We performed a repeated twofold cross-validation to test the
generalisability of our model. The model parameters were
obtained over nine randomly chosen levels in the game and
tested on the rest (3). We use mean absolute error (MAE) be-
tween model prediction and the other three game conditions
as the fitness score. Over 100 iterations, we obtain a mean
MAE of 3.1% (SD=0.22). In other words, after the parame-
ters are obtained, the model can be used to predict the user’s
performance with high accuracy.

DISCUSSION
This paper has presented a novel mathematical model for un-
derstanding error rates in temporal pointing. The task is com-
mon in HCI, but no previous model deals with the case in-
volving a bounded target. The data collected here lend con-
siderable credence to the model.

The model provides a novel explanation to differences among
input devices in temporal aspects of performance. It predicts
that users aim for temporal targets differently, with variation
by input method, and it points out three stages that affect vari-
ability in responses and thereby error rates. This explains a
hidden aspect of the finding that touchscreen gaming is asso-
ciated with much lower performance than gaming with phys-
ical keys [5, 42, 43]. This difference is not trivially due to
latency, as one could easily think. The model exposes two
factors. Firstly, targeting with the touchscreen is hard because
the timing of the sensor event is uncertain. We showed that
coinciding of the input event and the moment when the finger
has maximum impact on the surface aids in targeting. The
Touch-Maximum event allows a user to learn a mapping that
is more predictable and therefore improves accuracy. With
Touch-Maximum, error rates were decreased by up to 9.0%
from the empirical observation. Secondly, Touch-Maximum
still suffered from greater noise (cσ =0.0773) than Key-Press
(cσ =0.0705). Users cannot precisely control how high they
hold their finger, and the variation in distance between the
finger and surface may have increased variability.

We also noted that two participants in Experiment 1 did
not exhibit Gaussian response distributions, and we excluded

Figure 15. Comparison between data from Exp. 1 and Exp. 2: Despite
its apparent difficulty, temporal pointing is easier with visual cueing.

them from the modelling. We suspect that their non-Gaussian
patterns were due to intermittent change in strategy. To make
the model more universally applicable, strategies not covered
by reactive and proactive approaches deserve more attention.

Experiment 2 shows that performance in some complex, dy-
namic targeting tasks can be modelled successfully. Dividing
the game into two distinct regions associated with two types
of temporal targets, we obtained high fit for the model.

Our findings point out that the scope of the model is limited
to Dt >600 ms. Besides determining the scope of the model
also for other parameters, challenges for future work include
considering how to combine temporal with spatial pointing.
This would allow dealing with complex responses in, for ex-
ample, touch games. To improve the model, we also need to
understand how changes in task, user, or conditions affect µ
and σ. Our studies assumed relatively simple and predictable
temporal targets, but in many real-world interactions the tar-
gets come and go, each with properties that have to be in-
ferred on the fly.

We envision some possibilities in using the model to design
better interactions. Firstly, the model could be used analyti-
cally to tune the difficulty of temporal pointing in interactive
tasks. For example, one could use the model to design game
levels or dynamic interaction techniques. This can be done
by following the same procedure we used in Experiment 2 to
determine temporal targets. Secondly, dynamic adaptation of
temporal targets could be tried. In other words, the difficulty
of a task could be changed dynamically to fit the level of the
user. If we can obtain an estimate of the model parameters for
a user, perhaps from logging data, we can subtly tune the size
of the target. This might, for example, allow a novice gamer
to enjoy gaming with experts without a noticeable change in
appearance. Alternatively, such an personalised model could
be used to determine when to provide additional cues to fa-
cilitate temporal performance. Finally, the model informs the
development of input methods. It makes the prediction that of
equal importance with minimal latency is that the device al-
low accurate and reliable implicit aiming. This means design-
ing the input event in such a way that it provides a physically
clear input timing to the user.
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APPENDIX: TEMPORAL TARGETS IN EXPERIMENT 2

ID(bits) Tunnel height(px) Gravity(px2/fr) Dt(ms) Wt(ms)

R
eg

io
n

A

1.56 132 0.22 757.6 256.8
3.08 94 0.22 757.6 89.4
3.74 84 0.22 757.6 56.6
2.52 190 0.11 1515.2 263.9
3.60 150 0.11 1515.2 124.7
4.03 140 0.11 1515.2 92.9

R
eg

io
n

B

1.71 132 0.22 757.6 231.2
3.74 94 0.22 757.6 56.7
5.13 84 0.22 757.6 21.6
2.90 190 0.11 1515.2 203.4
4.77 150 0.11 1515.2 55.6
6.15 140 0.11 1515.2 21.4
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