MIT Engineers Develop New Way to Make Defect-Free Displays

Micro-LEDs (µLEDs) have been explored for augmented and virtual reality display applications that require extremely high pixels per inch and luminance. However, conventional manufacturing processes based on the lateral assembly of red, green and blue (RGB) µLEDs have limitations in enhancing pixel density. Recent demonstrations of vertical µLED displays have attempted to address this issue by stacking freestanding RGB LED membranes and fabricating top-down, but minimization of the lateral dimensions of stacked µLEDs has been difficult. Here we report full-colour, vertically stacked µLEDs that achieve, to our knowledge, the highest array density (5,100 pixels per inch) and the smallest size (4 µm) reported to date. This is enabled by a two-dimensional materials-based layer transfer technique that allows the growth of RGB LEDs of near-submicron thickness on two-dimensional material-coated substrates via remote or van der Waals epitaxy, mechanical release and stacking of LEDs, followed by top-down fabrication. The smallest-ever stack height of around 9 µm is the key enabler for record high µLED array density. We also demonstrate vertical integration of blue µLEDs with silicon membrane transistors for active matrix operation. These results establish routes to creating full-colour µLED displays for augmented and virtual reality, while also offering a generalizable platform for broader classes of three-dimensional integrated devices.

Nature

Micro-LED fabrication requires microscopic precision, a difficult task, and entire devices need to be scrapped if pixels are found to be out of place. The MIT team has come up with a potentially less wasteful way to fabricate micro-LEDs that doesn’t require precise, pixel-by-pixel alignment. The technique is an entirely different, vertical LED approach, in contrast to the conventional, horizontal pixel arrangement.

In the study, the researchers grow ultra-thin membranes of red, green, and blue LEDs. They then peeled the entire LED membranes away from their base wafers, and stacked them together to make a layer cake of red, green, and blue membranes. They could then carve the cake into patterns of tiny, vertical pixels, each as small as 4 microns wide.

Jeehwan Kim, associate professor of mechanical engineering at MIT, runs the lab responsible for this research. The lab specializes in developing techniques to fabricate pure, ultrathin, high-performance membranes, with a view toward engineering smaller, thinner, more flexible and functional electronics. The team previously developed a method to grow and peel away perfect, two-dimensional, single-crystalline material from wafers of silicon and other surfaces — an approach they call 2D material-based layer transfer, or 2DLT.